摘要
设D为奇数且最多含有3个互不相同的素因数,证明了不定方程组x2-6y2=1,y2-Dz2=4仅有两组非平凡解D=11,(x,y,z)=(49,20,6)和D=11×89×109,(x,y,z)=(4801,1960,6)。
The follwing conclusion is proved : If D 〉 0 is an odd square - free integer which has at most three distinct prime factors, then the equation in title only have two non - trivial solutions D = 11, (x ,y,z) = (49,20,6) and D 11 ×89 × 109, (x,y,z) = (4801,1960,6).
出处
《延安大学学报(自然科学版)》
2008年第4期19-21,共3页
Journal of Yan'an University:Natural Science Edition
基金
现代通信国家重点实验室基金(9140c1102060702)
关键词
不定方程组
pell议程
非平凡解
素因数
simuhancous diophantine equations
Pell equation
non- trivial solution
prime factors