摘要
如果一个v阶自正交拉丁方(SOLS)有in个阶为ih的子-SOLS(1≤i≤k),它们互不相交且是生成的,即∑k i=l nihi=v,就称这个自正交拉丁方为frame SOLS,记作FSOLS(h1n1h2n2…hknk).本文讨论FSOLS(2num)(m≥3,u为偶数)的存在性问题,主要利用了填洞构造法和加权构造法,得到FSOLS(2num)的存在条件如下:(1)m=3,u=4,n≥22;u=6,n≥31;u≥8,n≥u/2且n≠u/2+2,u/2+3;(2)m≥4,u≥8,n≥4.
An SOLS (self orthogonal Latin square) of order v with ni missing sub-SOLS (holes) of order hi (1 ≤i≤ k), which are disjoint and spanning (i.e.∑i=1^knihi=v), is called a frame SOLS and denoted by FSOLS (h1^n1h2^n2…hk^nk). In this paper the author discusses the existence of FSOLS(2^nu^m) for m ≥3 and u is even, in which the filling in holes and weighting constructions are mainly used. It may conclude with the following results: (1) m=3, u=4, n≥22;u=6, n≥31;u≥8, n≥u/2 and n≠u/2+2, u/2+3. (2) m≥ 4, u ≥8, n ≥ 4.
出处
《宁波大学学报(理工版)》
CAS
2008年第4期524-527,共4页
Journal of Ningbo University:Natural Science and Engineering Edition
基金
浙江省自然科学基金(Y607026)
宁波市自然科学基金(2006A610094)
关键词
自正交拉丁方
型
可分组设计
self orthogonal Latin square
type
group divisible design