期刊文献+

关于FSOLS(2~nu^m)的存在性研究

On Existence of FSOLS of Type 2~nu^m
下载PDF
导出
摘要 如果一个v阶自正交拉丁方(SOLS)有in个阶为ih的子-SOLS(1≤i≤k),它们互不相交且是生成的,即∑k i=l nihi=v,就称这个自正交拉丁方为frame SOLS,记作FSOLS(h1n1h2n2…hknk).本文讨论FSOLS(2num)(m≥3,u为偶数)的存在性问题,主要利用了填洞构造法和加权构造法,得到FSOLS(2num)的存在条件如下:(1)m=3,u=4,n≥22;u=6,n≥31;u≥8,n≥u/2且n≠u/2+2,u/2+3;(2)m≥4,u≥8,n≥4. An SOLS (self orthogonal Latin square) of order v with ni missing sub-SOLS (holes) of order hi (1 ≤i≤ k), which are disjoint and spanning (i.e.∑i=1^knihi=v), is called a frame SOLS and denoted by FSOLS (h1^n1h2^n2…hk^nk). In this paper the author discusses the existence of FSOLS(2^nu^m) for m ≥3 and u is even, in which the filling in holes and weighting constructions are mainly used. It may conclude with the following results: (1) m=3, u=4, n≥22;u=6, n≥31;u≥8, n≥u/2 and n≠u/2+2, u/2+3. (2) m≥ 4, u ≥8, n ≥ 4.
作者 刘可 徐允庆
机构地区 宁波大学理学院
出处 《宁波大学学报(理工版)》 CAS 2008年第4期524-527,共4页 Journal of Ningbo University:Natural Science and Engineering Edition
基金 浙江省自然科学基金(Y607026) 宁波市自然科学基金(2006A610094)
关键词 自正交拉丁方 可分组设计 self orthogonal Latin square type group divisible design
  • 相关文献

参考文献10

  • 1Brayton R K, Coppersmith D, Hoffmam A J. Selforthogonal Latin squares[C]//Teorie Combinatorie. Proceeding of the Rome Conference, 1976:509-517.
  • 2Lindner C C, Rodger C A. Contemporary design theory [M]. New York: Wiley Press, 1992.
  • 3Colbourn C J, Stinson D R. Edge-coloured designs with block size four[J]. Aequationes Math, 1988, 36:230-245.
  • 4Bennett F E, Wei R, Zhang Hantao. Holey Schroder designs of type 2^nu^1[J]. Combin Designs, 1998, 6:131- 150.
  • 5Colboum C J, Royle G F. Supports of (v,4,2) designs[J]. Le Matematiche, 1990, 14:39-60.
  • 6Chen Kejun, Zhu Lie. On the existence of Skew Room flames of type l^u[J]. Ars Combinatoria, 1996, 43:65-79.
  • 7Stinson D R, Zhu Lie. On the existence of certain SOLS with holes[J]. JCMCC, 1994, 15:33-45.
  • 8Xu Yunqing, Zhang Hantao, Zhu Lie. Existence of frame SOLS of type a^nb^1[J]. Discrete Math, 2002, 250:211-230.
  • 9Xu Yunqing, Zhu Lie. Existence of frame SOLS of type 2^nU^1 [J]. J Combin Designs, 1995, 2(3):115-133:
  • 10Xu Yunqing. On frame self-orthogonal Latin squares of type h^m1^n[J]. Australasian J Combinatorics, 2004, 30:85-94.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部