期刊文献+

达到对策着色最大值的树的结构下界

Lower Bound of Structure on Trees Whose Game Chromatic Number is Equal to the Maximum of the Game Chromatic Number of Forests
下载PDF
导出
摘要 讨论了图的二人对策着色.给出了对策色数能够达到树族对策色数最大值且结构非常简单的树. This paper discusses the game coloring on graphs. In this paper, we gives a tree with more simple structure whose game chromatic number is equal to the maximum of the game chromatic number of forests.
作者 沈邦玉
出处 《淮阴师范学院学报(自然科学版)》 CAS 2008年第3期193-195,198,共4页 Journal of Huaiyin Teachers College;Natural Science Edition
基金 江苏省高校自然科学研究计划项目(06KJB110010)
关键词 对策着色 可行色 对策色数 二叉正则树 game coloring feasible color game chromatic number tree binary regular tree
  • 相关文献

参考文献14

  • 1[1]Bodlaender H L.On the complexity of some coloring games[J].Int J Found.Comput Sci,1991,2:133-148.
  • 2[2]Dinski T,Zhu X.A bound for the game chromatic number of graphs[J].Discrete Math,1999,196:109-115.
  • 3[3]Guan D,Zhu X.The game chromatic number of outerplanar graphs[J].J Graph Theory,1999,30:67-70.
  • 4[4]Chou C Y,Wang W,Zhu X.Relaxed game chromatic number of graphs[J].Discrete Math,2003,262:89-98.
  • 5[5]Faigle U,Kern U,Kierstead H A,Trotter W T.On the game chromatic number of some classes of graphs[J].Ars Combin,1993,35:143-150.
  • 6沈邦玉,周兴和.二叉树上的二人对策着色[J].南京师大学报(自然科学版),2004,27(2):19-22. 被引量:3
  • 7[7]He W,Wu J,Zhu X.Relaxed game chromatic number of trees and outerplanar graphs[J].Discrete Math,2004,281:209-219.
  • 8沈邦玉,周兴和.树上的二人对策着色[J].淮阴师范学院学报(自然科学版),2004,3(1):4-7. 被引量:3
  • 9[9]Dunn C,Kierstead H A.A simple competitive graph coloring algorithm II[J].J Combin Theory Ser B,2004,90:93-106.
  • 10[10]Bondy J A,Murty U S R.Graph Theory with Application[M].The Macmillan Press Ltd USA,1976:115-180.

二级参考文献20

  • 1[1]Bodlaender H L. On the complexity of some coloring games[J].Int J Found. Comput Sci, 1991(2): 133-148.
  • 2[2]Bondy J A,Murty U S R. Graph Theory with Application[M]. The Macmillan Press Ltd USA, 1976: 115-180.
  • 3[3]Chou C Y,Wang W,Zhu X. Relaxed game chromatic number of graphs[J]. Discrete Math, 2003(262): 89-98.
  • 4[4]Dinski T,Zhu X. A bound for the game chromatic number of graphs[J]. Discrete Math, 1999(196): 109-115.
  • 5[5]Faigle U,Kern U,Kierstead H A,Trotter W T. On the game chromatic number of some classes of graphs[J]. Ars Combin, 1993(35): 143-150.
  • 6[6]Guan D, Zhu X. The game chromatic number of outerplanar graphs[J]. J Graph Theory,1999(30): 67-70.
  • 7[7]Kierstead H A. A simple competitive graph coloring algorithm[J]. J Combin Theory Ser B, 2000(78): 57-68.
  • 8[8]Kierstead H A,Trotter W T. Planar graph coloring with an uncooperative partner[J]. J Graph Theory, 1994, 18(6): 569-584.
  • 9[9]Zhu X. The game coloring number of planar graphs[J], J Combin Theory Ser B, 1999(75): 245-258.
  • 10[10]Zhu X. The game coloring number of pseudo partial k-trees[J]. Discrete Math, 2000(215): 245-262.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部