期刊文献+

大侧斜螺旋桨敞水性能的RANSEs模拟 被引量:8

RANSEs Simulation of Highly Skewed Propeller's Open Water Performances
原文传递
导出
摘要 采用求解基于雷诺时均处理的流场控制方程计算和分析了大侧斜螺旋桨在进速系数J=0.2~1.0范围内的敞水性能和流场流动特征并与实验数据进行了比较.选择SSTκ-ω二方程紊流模型对湍流进行模拟.结果表明:推力系数与实验值有很好的一致性,误差小于3%;力矩系数较实验值偏大,误差在5%以内,且变化趋势稳定;敞水效率曲线变化趋势与实验一致,最高效率点与实验相同;即使在设计工况附近,螺旋桨尾流仍然存在明显的切向旋转速度;桨叶吸力面靠近叶梢部分存在低压区;r=0.7R叶切面压差最大点位于切面最大厚度处,与切面所能承受最大压应力位置一致.最后计算确定了该螺旋桨模型桨敞水实验时对应的临界雷诺数为7.6×105,与实验情况吻合.该值较国内教科书中提到的ITTC给定临界雷诺数3.0×105要大. Open water performances and flow patterns of high-skewed propeller with different advance ratios, from 0.2 to 0.9, were numerically simulated based on solving the Reynolds-averaged Navier-Stokes equations in rotating and stationary coordinate systems and compared with the experimental data. The SST κ-ω turbulence model was selected to model the turbulence effect. The thrust coefficient achieves a good agreement for the whole region. The difference of the torque coefficient is less then 5% for all the advance ratios. The open water efficiency shapes well with the experiment data. There are still significant tangential velocities within the wake flow even close to the design condition. The blade suction surface static pressure predictions shows a low region near the tip. The blade section r =0.7R's biggest pressure difference lies at the thickest point. The critical Reynolds number Re applies to the model test is investigated at last in this paper, its valve 7.6 × 10^5 is bigger than that given by the ITTC appears in the domestic text books, and corresponds well with the experiment at the same time. 16figs., 14refs.
出处 《湖南科技大学学报(自然科学版)》 CAS 北大核心 2008年第4期66-70,共5页 Journal of Hunan University of Science And Technology:Natural Science Edition
基金 国家"十一.五"预研项目资助
关键词 船舶 大侧斜螺旋桨 敞水性能 数值模拟 计算流体力学 ship highly skewed propeller open water performances numerical simulation computational fluid dynamics
  • 相关文献

参考文献8

  • 1[1]Sileo L,Binfiglioli A,MAGI V.BANS Simulation of the Flow Past a Marine Propeller Under Design and Off-design Conditions[C]//4th Annual Conference of the Computational Fluid Dynamics Society of Canada.2006:21-28.
  • 2[2]Sanchea-caja A,Rautanhiemo P,Siikonen T.Simulation of Incompressible Viscous Flow Around a Ducted Propeller Using a BANS Equation Solver[C]//23rd Symposium on Navy Hydrodynamics,France:2000:527-539.
  • 3[3]Watanabe T,Kawamura T and Takekoshi Y.Simulation of Steady and Unsteady Cavitation on a Marine Propeller Using a BANS CFD code[C] //Fifth International Symposium on Cavitation (CAV2003) Osaka,Japan,2003:1-8.
  • 4[5]Cumming R A,Morgan B,Boswell R J.Highly Skewed Propellers[J].SNAME Transactions,1982,90:98-135.
  • 5[10]Abdel-Maksoud M,Heinke H J.Scale Effects on Ducted Propellers[R].24th Symposium on Navy Hydrodynamics,Japan,2002.
  • 6[11]Menter F R,Kuntz M,Langtry R.Ten Years of Industrial Experience with SST Turbulence Modal[R].Turbulence Heat and Mass transfer.4 Bege 11 House Inc,2003:744-759.
  • 7[12]Rhee S H,Joshi S.CFD Validation for a Marine Propeller Using an Unstructured Mesh Based BANS Method[C]//Proeeedings of FEDSM'03,4th ASME-JSME Joint Fluids Engineering,Summer Conference,Hawaii,USA,2003.
  • 8[13]Olsen A S.Investigation of the Viscous Flow Around Two Model Propellers In Uniform Inflow[R].Finland:Department of Naval Architecture and Offshore Engineering Technical University of Denmark,2001.

同被引文献76

  • 1王永生,丁江明.液力偶合器通用外特性的数学建模[J].机械工程学报,2005,41(4):225-228. 被引量:12
  • 2刘建全 刘卫斌.基于CFD方法的螺旋桨敞水数值实验研究.中国水运,2007,7(2):2006-44,42.
  • 3Sanchez Caja A, Rautanhiemo P, Siikonen T. Simulation of incompressible viscous flow around a ducted propeller using a RANS equation solver[C]//23rd Symposium on Navy Hydrodynamics. Washington DC: The National Academies Press, 2001: 527-539.
  • 4Abdel Maksoud M, Heinke H J. Scale effects on ducted propellers [C]//24th Symposium on Navy Hydrodynamics. Washington DC: The National Academies Press, 2003: 744-759.
  • 5Miner S M. CFD Analysis of the first-stage rotor and stator in a two-stage mixed flow pump[J]. International Journal of Rotating Machinery, 2005 (1): 23- 29.
  • 6Das H N, Jayakumar P, Saji V F, etal. CFD examination of interaction of flow on high-speed submerged body with pumpjet propulsor[C]//5th International Conference on High Performance Marine Vehicles. London: Royal Institute of Naval Architects, 2006: 466-479.
  • 7Sileo L, Bonfiglioli A, Magi V. RANSEs simulation of the flow past a marine propeller under design and off-design conditions[C]//14th annual conference of the Computational Fluid Dynamics Society of Canada. Canada: Curran Associates Inc, 2006: 21-28.
  • 8杨琼方 王永生 范露.CFD在“机电一体化”导管桨性能分析及优化设计中的应用.机械工程学报,2009,45(8):210-217.
  • 9Berchiehe N, Janson C E. Grid influence on the propeller open-water performance and flow field [J]. Ship Technology Research, 2008, 55. 87-96.
  • 10任明琪,魏跃强,赵晨.轴流泵的基本方程式以及轴面速度和周向速度分布[C]//第四届全国流体传动与控制学术会议.北京:中国机械工程学会,2006.

引证文献8

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部