期刊文献+

一类整数小波变换的优化设计及其图像编码应用

Optimization design of a class of integer wavelet transforms and their application to image coding
下载PDF
导出
摘要 整数小波变换已在嵌入式图像编码领域取得了极大的成功,一种实现整数小波变换的方法是提升.给出一种基于提升的参数化构造法,构造一类新的整数小波变换,它们仅用一个自由参数表示.随意调整该参数,就可构造出不同的整数小波变换.作为构造示例,构造了5种整数小波变换,它们的提升滤波器系数全为二进制分数(形如k/2n,k,n∈Z的数).实验表明,其中的两种变换与当前几种广为应用的整数小波变换相比,具有优异的有损和无损图像压缩性能. The integer wavelet transform (IWT) has proved to be particularly successful in the area ot embedded image coding. One of the possible methods to realize the IWT is the lifting scheme. A parameterization technique of IWT was presented based on the lifting scheme and a new class of IWT was parameterized by using one free parameter only. Different IWT could easily be obtained by adjusting the free parameter. As an illustration of this method, five IWTs with their lifting filters all having binary coefficients (numbers of the form k/2^n,n∈Z) were constructed. The experiments showed that, compared to several other widely-used IWTs, two of these transforms possessed more superior compression performance for both lossy and lossless image coding.
出处 《兰州理工大学学报》 CAS 北大核心 2008年第6期102-106,共5页 Journal of Lanzhou University of Technology
基金 江苏省高校自然科学基础研究项目(07KJD520005)
关键词 嵌入式图像编码 整数小波交换 提升 压缩性能 有损编码 无损编码 embedded image coding integer wavelet transform lifting compression performance lossycoding lossless coding
  • 相关文献

参考文献14

  • 1ISO/IEC 15444-1. Information teehnology--JPEG 2000 image coding system: core coding system [S/OL]. (2008-03-10). http://www. ptsn. net. cn/standard/std_query/show-iso-15472- 1. htm.
  • 2LIU Zaide, ZHENG Nanning. Parametrization construction of biorthogonal wavelet filter banks for image coding [J]. Signal, Image and Video Processing, 2007,1 (1) : 63-76.
  • 3LIU Zaide, ZHENG Nanning, LIU Yuehu, et al. Optimization design of biorthogonal wavelets for embedded image coding [J]. IEICE Trans Info and System, 2007, E90-D(2) : 569-578.
  • 4高成秀,刘在德,王智平.7/5双正交小波的构造及图像编码应用[J].兰州理工大学学报,2006,32(2):89-92. 被引量:2
  • 5CALDERBANK A R, DAUBECHIES I, SWELDENS W, et al. Wavelet transforms that map integers to integers [J]. Appl Comput Harmon Anal, 1998,5(7) : 332-369.
  • 6REICHEL J, MENEGAZ G, NADENAU M J, et al. Integer wavelet transform for embedded lossy to lossless image compression [J]. IEEE Trans Image Proc, 2001,10(3) : 383-392.
  • 7BILGIN A, SEMENTILLI P J, SHENG Fang, et al. Scalable image coding using reversible integer wavelet transforms [J]. IEEE Trans Image Proe,2000,9(11) : 1972-1977.
  • 8ADAMS M D, WARD R K. Symmetric-extension-compatible reversible integer-to-integer wavelet transforms [J]. IEEE Trans Signal Proc,2003,51(10):2624-2636.
  • 9SWELDENS W. The lifting scheme: a custom-design of biorthogonal wavelets [J]. Applied Computational and Harmonic Analysis, 1996,3(2): 186-200.
  • 10DAUBECHIES I, SWELDENS W. Factoring wavelet transforms into lifting steps [J]. J Fourier Analysis and Applications, 1998,4(3) : 247-269.

二级参考文献19

  • 1[1]Cohen A, Daubechies I, Feauveau J C. Biorthogonal bases of compactly supported wavelets [J]. Commun Pure Appl Math, 1992, 45: 485~560.
  • 2[2]Villasenor J D, Belzer B, Liao J. Wavelet filter evaluation for image compression [J]. IEEE Trans on Image Processing, 1995, 4(8): 1 053~1 060.
  • 3[3]Lightstone M, Majani E, Mitra S K. Low bit-rate design considerations for wavelet-based image coding[J]. Multidimensional Syst Signal Processing, 1997,8(1): 111~128.
  • 4[4]Masud S, Mc Canny J V. Finding a suitable wavelet for image compression applications [J]. IEEE Proceedings 1998, 5:2 581~2 584.
  • 5[5]Wei D, Tian J, Wells R O, et al. A new class of biorthogonal wavelet systems for image transform coding [J]. IEEE Trans on Image Processing, 1998, 7(7): 1 000~1 013.
  • 6[6]ISO/IFC Final Committee Draft 15444-1-2000 , JPEG 2000 image coding system [S].
  • 7[7]Tay D B H. Rationalizing the coefficients of popular biorthogonal wavelet filters [J]. IEEE Trans on Circuits & Syst for Video Tech, 2000, 10(6): 998~1005.
  • 8[8]Sweldens W. The lifting scheme: a construction of second generation wavelets [J]. SIAM J Math Anal 1997, 29(2): 511~546.
  • 9[9]Daubechies I, Sweldens W. Factoring wavelet transforms into lifting steps [J]. Fourier Analysis and Applications, 1998, 4(3): 247~269.
  • 10[10]Woods J W, Naveen T. A filter based bit allocation scheme for subband compression of HDTV [J]. IEEE Trans on Image Processing, 1992, 1(3): 436~440.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部