摘要
讨论了一类具有二维中心的三步幂零李代数的一些结构性质,研究了以这类幂零李代数为幂零根基的不可分解的可解李代数,确定了该类可解李代数的维数,并具体构造出复数域上其中一类6维的可解李代数.
In this paper, we have discussed a 3-step nilpotent Lie algebra with a two dimensional center and studyled a class of indecomposable solvable Lie algebras which nilradieal is the nilpotent Lie algebra. We have determined the dimension of the solvable Lie algebras and constructed a class of the solvable Lie algebras of 6 dimension over complex field.
出处
《西华师范大学学报(自然科学版)》
2008年第4期390-393,402,共5页
Journal of China West Normal University(Natural Sciences)
基金
西华师范大学科研启动基金资助项目(07B046)
关键词
幂零根基
可解李代数
导子
同构
derivation
solvable Lie algebras
nilradieal
homomorphism