期刊文献+

甲基丙烯酸改性丁苯橡胶/埃洛石纳米管复合材料的研究 被引量:10

Study of styrene-butadiene rubber/halloysite nanotubes nanocomposites modified by methacrylic acid
下载PDF
导出
摘要 采用一种新型非石油资源橡胶补强剂—埃洛石纳米管(Halloysite Nanotubes,HNTs)对丁苯橡胶进行补强,采用甲基丙烯酸(Methacrylic Acid,MAC)为改性剂进一步改善硫化胶的性能,并研究了MAC用量对混炼胶的硫化特性、硫化胶力学性能和交联密度的影响.结果表明,甲基丙烯酸的加入对焦烧时间的影响不大,会降低硫化初期最低扭矩(ML),有利于提高SBR/HNTs的加工性能;MAC的加入可进一步有效改善HNTs的补强效果;当MAC用量大于5phr时,所制备的SBR/HNTs复合材料变为半透明状,说明HNTs在SBR橡胶基体中的分散效果很好;当HNTs和MAC用量分别为40 phr和12phr时,复合材料的综合性能最优,其300%定伸应力、拉伸强度和撕裂强度分别可达6.3 MPa,15.1MPa和51.3 kN/m,同时断裂伸长率可达700%;MAC的加入可以有效提高总交联密度和离子交联密度,对离子交联密度的影响更为显著. Abstract: A new kind of rubber reinforcing agent from non-petroleum resource, halloysite nanotubes (HNTs) were adopted to reinforce styrene-butadiene rubber (SBR) in this paper. Methacrylic acid (MAC) was employed as interfacial modifier to improve the comprehensive properties of the vulcanizates. The effects of MAC loading on vulcanization characteristics of SBR/HNTs compounds, mechanical properties of vulcanizates and crosslink density (based on Flory-Rehner equation) were investigated. The results showed that HNTs could increase the tensile strength and modulus of SBR vulcanizates. The scorch time of the compounds was basically independent of the MAC content although the torsion of the compounds be- fore scorch was decreased with MAC content. SBR/HNTs compounds incorporated with MAC showed greatly increased tensile strength and modulus. When the MAC loading was higher than 5 phr, translucent samples were surprisingly obtained, indicating uniform dispersion of halloysite nanotubes in the rubber matrix. When the contents of HNTs and MAC were 40 phr and 12 phr respectively, 300% stress, tensile strength and tear strength of the vulcanite reached 6.3 MPa, 15.1 MPa and 51.3 kN/m respectively, with elongation at break up to 700%. The crosslink densities calculated from Flory-Rehner equation indicated that the total crosslink density and the ionic crosslink density of the vulcanizates were increased while the effect on the ionic crosslink density was more obvious.
出处 《材料研究与应用》 CAS 2008年第4期277-280,共4页 Materials Research and Application
基金 国家自然科学基金资助项目(50603005)
关键词 埃洛石纳米管 丁苯橡胶 增强 界面 halloysite nanotubes styrene-butadiene rubber reinforcement interface
  • 相关文献

参考文献8

  • 1[1]KELLY H M,DEASY P B,ZIAKA E,et al.Formulation and preliminary in vivo dog studies of a novel drug delivery system for the treatment of periodontitis[J].International Journal of Pharmaceutics,2004,274:167-183.
  • 2[2]LIU M X,GUO B C,DU M L,et al.Properties of halloysite nanotube-epoxy resin hybrids and the interfacial reactions in the systems[J].Nanotechnology,2007,18(45):455703.
  • 3[3]DU M L,GUO B C,JIA D M.Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene)[J].European Polymer Journal,2006,42(6):1362-1369.
  • 4[4]SAMUI A B,DALVI V G,CHANDRASEKHAR L,et al.Interpenetrating polymer networks based on nitrile rubber and metal methacrylates[J].Journal of Applied Polymer Science,2006,99:2542-2548.
  • 5[5]YIN D H,ZHANG Y,ZHANG Y X,et al.Reinforcement of peroxide-cured styrene-butadiene rubber vulcanizates by mathacrylic acid and magnesium oxide[J].Journal of Applied Polymer Science,2002,85:2667-2676.
  • 6[6]MOUSA A,KOCSIS J K.Rheological and thermodynamical behavior of styrene/butadiene rubber-organoclay nanocomposites[J].Macromolecular Materials and Engineering,2001,286:260-266.
  • 7王聿衡,彭宗林,张勇,张隐西.原位生成ZDMA补强HNBR性能的研究[J].橡胶工业,2006,53(1):10-15. 被引量:10
  • 8[8]KLPPEL M,SCHUSTER R H,SCHAPER J.Carbon black distriubution in rubber blends:a dynamic-mechanical analysis[J].Rubber Chemistry and Technology,1998,72:91-108.

二级参考文献10

共引文献9

同被引文献41

  • 1何伟,廖功雄,蹇锡高,董黎明,王沛.PPESK/PES共混物热性能及动态机械性能研究[J].高分子学报,2006,16(1):108-112. 被引量:3
  • 2代世峰,任德贻,李生盛,CHOU Chenlin.鄂尔多斯盆地东北缘准格尔煤田煤中超常富集勃姆石的发现[J].地质学报,2006,80(2):294-300. 被引量:40
  • 3Wang Mengjiao, Morris M D, Kutsovsky Y. Effect of fumed silica surface area on silicone rubber reinforcement [ J]. Kaut- schuk und Gummi Kunststoff,2008,61 (3) :107 -117.
  • 4Choi S S. Difference in bound rubber formation of silica and carbon black with styrene-butadiene rubber[ J]. Polymers for Advanced Technologies ,2002,13 ( 6 ) :466 - 474.
  • 5Salvi A M, Pucciariello R, Guaseito M R, et al. Characterization of the interface in rubber/silica composite materials [ J ]. Surface and Interface Analysis ,2002,33 (10/11 ) :850 -861.
  • 6Park S J,Cho K S. Filler-elastomer interactions: Influence of silane coupling agent on crosslink density and thermal stability of silica/rubber composites[J]. Journal of Colloid and Interface Science,2003,267( 1 ) :86 -91.
  • 7Zhuravlev L T. The surface chemistry of amorphous silica[ J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects ,2000,173 ( 1/2/3 ) : 1 - 38.
  • 8Choi S S, Nah C, Byung-Wook J. Properties of natural rubber composites reinforced with silica or carbon black: Influence of cure accelerator content and filler dispersion[ J]. Polymer In- ternational,2003,52(8) :1382 - 1389.
  • 9Bruhne S, Gottlieb S, Assmus W, et al. Atomic structure analysis of nanocrystalline boehmite A10 (OH) [ J ]. Crystal Growth & Design,2008,8 (2) :489 - 493.
  • 10Siengchin S,Karger-Kocsis J. Structure and creep response of toughened and nanoreinforced polyamides produced via the latex route: Effect of nanofiller type [ J]. Composites Science and Technology, 2009,69 ( 5 ) : 677 - 683.

引证文献10

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部