期刊文献+

紧致齐性黎曼流形上的特征值估计 被引量:2

Estimates on Eigenvalues on Compact Homogeneous Riemannian Manifolds
下载PDF
导出
摘要 设M是紧致的齐性黎曼流形,-Δ+V是M上的Schrdinger算子.对于非负函数V,得到了用前k个特征值估计第k+1个特征值的一个表达式. Let M he a compact homogeneous Riemannian manifold, -△ +V be the Schroedinger operator defined on M. For nonnegative function V, the research obtains bounds on the (k + 1) -th eigenvalues in terms of the first k eigenvalues.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第6期9-11,共3页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金(10671181)
关键词 齐性黎曼流形 拉普拉斯 Schroedinger算子 特征值 homogeneous Riemannian manifold Laplacian Schroedinger operator eigenvalues
  • 相关文献

参考文献6

  • 1Cheng Q M, Yang H C, Estimates on eigenvalues of Laplaeian[J]. Math Ann, 2005,331 (2) :445--460.
  • 2Cheng Q M, Yang H C. Inequalities for eigenvalues of Laplacian on domains and compact complex hypersurfaces in complex projective spaces[J]. J Math Soc Japan,2006,58(3) :545--561.
  • 3Cheng Q M, Yang H C. Bounds on eigenvalues of Dirichlet laplacian[J]. Math Ann,2007,337(1):159--175.
  • 4ZhangXP YuHJ.Existence of large positive solutions of a class of quasilinear elliptic eigenvalue problems.阿南师范大学学报(自然科学版),2002,30(2):14-17.
  • 5马冰清,黄广月.Ricci-Hamilton流上特征值的单调性[J].河南师范大学学报(自然科学版),2007,35(4):30-32. 被引量:1
  • 6Li P. Eigenvalue estimates on homogeneous manifolds[J]. Comment Math Helvetici, 1980,55 (3) : 347-363.

二级参考文献3

  • 1Shi W X. Deforming the metric on complete Riemannian manifolds[J]. J of Differential Geometry, 1989,30:353-360.
  • 2Ma L. Eigenvalue monotonicity for the Ricci-Hamilton flow[J]. Ann of Global Analysis and Geometry,2006,29:287-292.
  • 3Cao R Cao X D. Eigenvalues of (-△+R/2) on manifolds with nonnegative curvature operator[J]. Math Ann,2007,337:435-441.

共引文献1

同被引文献11

  • 1Payne L E,Pblya G,Weinberger H F. On the ratio of consecutive eigenvalues[J]. J Math Phys,1956,35:289-298.
  • 2Cheng Q M, Yang H C. Universal bounds for eigenValues of a buckling problem[J]. Commun Math Phys,2006,262(3) :663-675.
  • 3Wang Q L,Xia C Y. Universal inequalities for eigenvalues of the buckling problem on spherical domains[J]. Commun Math Phys, 2007, 270(3) :759-775.
  • 4Yang H C.An estimate of the difference between consecutive eigenvalues[M].Trieste:preprint IC/91/60 of ICTP,1991.
  • 5Ashbaugh M S.Universal eigenvalue bounds of Payne-Polya-Weinberger,Hile-Protter,and H.C.Yang[J].Proc Indian Acad Sci Math Sci,2002,112(1):3-30.
  • 6Cheng Q M,Yang H C.Estimates on eigenvalues of Laplacian[J].Math Ann,2005,331(2):445-460.
  • 7Cheng Q M,Yang H C.Estimates for eigenvalues on Riemannian manifolds[J].J Differential Equations,2009(247):2270-2281.
  • 8Cheng Q M,Yang H C.Inequalities for eigenvalues of a clamped plate problem[J].Trans Amer Math Soc,2006,358(6):2625-2635.
  • 9Wang Q L,Xia C Y.Universal bounds for eigenvalues of the biharmonic operator on Riemannian manifolds[J].J Funct Anal,2007,245(1):334-352.
  • 10Cheng Q M,Huang G Y,Wei G X.Estimates for lower order eigenvalues of a clamped plate problem[J].Calc Var in PDE,2010(38):409-416.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部