期刊文献+

T与*-Aluthge-变换■^((*))的关系 被引量:2

Relations between T and ■^((*))
下载PDF
导出
摘要 主要研究了T与它的*-Aluthge-变换■(*)的一些相似性质,如T有单值扩展性质(SVEP)当且仅当■(*)有单值扩展性质(SVEP),T有β性质当且仅当■(*)有β性质等. This research has studied some similar properties of T and T^~^(*) , such as T has SVEP if and only if T^~^(*) has, T has β property if and only if T^~^(*) has and so on.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第6期24-26,共3页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金天元青年专项基金(10726073)
关键词 *-Aluthge变换 SVEP β性质 可逆 拟相似 拟仿射 *-Aluthge transformation SVEP β property inverse quasimilarity quasiaffinity
  • 相关文献

参考文献7

  • 1Mee-K, Young Kim, Eungil Ko. Some connections between an operator and its Aluthge transform[J]. Glasgow Math J, 2005,47:167- 175.
  • 2Bong Jung IL, Eungil Ko, Carl Pearcy. Spectral pictures of Aluthge transforms of operators[J]. Integr Equat Oper Th, 2001,40:52--60.
  • 3Bong Jung IL, Eungil Ko, Carl Pearcy. Aluthge transforms of operators[J]. Integr Equat Oper Th, 2000,37:437--448.
  • 4Yamazaki T. On numerical range of the Aluthge transformation[J]. Linear Algebra Appl, 2002,341:111-117.
  • 5Kimura F. Analysis of non-normal operators via Aluthge transformation[J]. Integr Equat Oper Th,2004,50:375--384.
  • 6杨长森,申俊丽.绝对-*-k-仿正规算子的谱(0≤k≤1)[J].河南师范大学学报(自然科学版),2008,36(2):152-152. 被引量:2
  • 7Berger C S,Stampfli J G. Mapping theorems for the numerical range[J]. Amer J Math, 1967,89:1047-- 1055.

二级参考文献3

  • 1Cho M, Huruya T. p-Hyponormal operators for 0 < p <1/2 [J]. Coment Nath, 1993,33:23-29.
  • 2Harte R E. Fredholm,Weyl and Browder theory[J]. Proc Royal Irish Acad, 1985,85A(2):151-176.
  • 3Harte R E. Invertibility and singularity for bounded linear operators[M]. New York: Dekker, 1988.

共引文献1

同被引文献10

  • 1Mee-K, Young Kim, Eungil Ko. Some connectionsbetween an operator and its Aluthge transform}[J]. Glasgow Math J,2005,47:167- 175.
  • 2Bong Jung IL, Eungil Ko, Carl Pearcy. Spectral pictures of Aluthge transforms of operators[J], lntegr Equat Oper Th,2001,40 : 52- 60.
  • 3Bong J ung IL, Eungil Ko, Carl Pearcy. Aluthge transforms of operators[J]. Integr Equat Oper Th,2000,37:437-448.
  • 4Yamazaki T. On numerical range of the Aluthge transformation[J]. Linear Algebra Appl, 2002,341 : 111 - 117.
  • 5Kimura F. Analysis of non-normal operators via Aluthge transformation[J].Integr Equat Oper Th,2004,50:375-384.
  • 6Fumihiko Kimura. Analysis of Non-normal Operators via Aluthge Transformation[J] 2004,Integral Equations and Operator Theory(3):375~384
  • 7Il Bong Jung,Eungil Ko,Carl Pearcy. Spectral pictures of Aluthge transforms of operators[J] 2001,Integral Equations and Operator Theory(1):52~60
  • 8Il Bong Jung,Eungil Ko,Carl Pearcy. Aluthge transforms of operators[J] 2000,Integral Equations and Operator Theory(4):437~448
  • 9申俊丽,左飞.T与*-Aluthge-变换子■(*)之间的关系[J].新乡学院学报,2008,25(3):27-28. 被引量:1
  • 10左飞,申俊丽.T与*-Aluthge-变换■^((*))的核之间的关系[J].河南师范大学学报(自然科学版),2009,37(5):22-23. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部