期刊文献+

矩形薄板动力响应的DQ半解析法研究 被引量:2

DQ Semi-analytic Method of Dynamic Response on Thin Rectangular plates
下载PDF
导出
摘要 针对矩形薄板的动力响应问题,提出了一种有效的方法:DQ半解析法,本方法针对矩形薄板的振动控制微分方程,在空间域采用DQ法,即微分求积法(differential quadrature method),在时间域取级数,采用时域配点的方法,得到求解以板各节点动力响应位移场为全部待定参数的线性方程组,只需一次求解该方程组即得到全部待定参数,进而得到各节点的动力响应位移场,再由高阶Lagrange插值得到全域内的动力响应位移场.算例结果表明,本方法具有很高的精度和极佳的计算效率,且不受边界条件约束. Based on the vibration theory of the rectangular plates, the issue about the dynamic response of plates is researched with a new method , which is called differential quadrature semi-analytic method . It adopts differential quadrature method in space domain and series in time domain on the basis of controlling partial differential equation, and gets DQ linear equations for solving all parameters of the displacement-field by adding timepoints, with that,it gets the dynamic response of the plates.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第6期59-62,共4页 Journal of Henan Normal University(Natural Science Edition)
基金 四川省科技厅应用基础项目(2006J13-166) 四川省教育厅重点科研项目(07ZA126) 四川理工学院院内科研项目(2007ZR101)
关键词 矩形板 半解析法 DQ法 动力响应 自由振动 受迫振动 rectangular plates semi-analytic method DQ method dynamic response free vibration forced vibration
  • 相关文献

参考文献11

  • 1Bellman R,Casti J. Differential quadrature and long-term integration[J]. Journal of Math Analysis and Applications,1971,34..235--238.
  • 2Cortinez V H. DQM for vibration analysis of composite thin-walled curved beams[J]. Journal of Sound and Vibration,2001,246(3) :551-- 555.
  • 3李晶晶,程昌钧.考虑高阶横向剪切正交各向异性板非线性弯曲的微分求积分析[J].应用数学和力学,2004,25(8):801-808. 被引量:5
  • 4Gutierrez RH, Laura PAA. Technical note analysis of vibrating, thin, rectangular plates with point supports by the method of differential quadrature[J]. Ocean Engng, 1995,22(1) : 101 -- 103.
  • 5Hsu MH. Vibration analysis of edge-cracked beam on elastic foundation with axial loading using the differential quadrature method[J]. Comput. Methods Appl. Mech. Engrg,2005,194(1):1--17.
  • 6Franciosi C ,Tomasiello S. Static analysis of a Bickford beam by means of the DQEM[J]. International Journal of Mechanical Sciences, 2007,49 (1) : 122-- 128.
  • 7Striz AG,Chen WL. Free vibration of plates by the high accuracy quadrature element method[J]. Journal of Sound and Vibration, 1997, 202(5) :689--702.
  • 8Malekzadeha P,Karamib G. Polynomial and harmonic differential quadrature methods for free vibration of variable thickness thick skew plates[J]. Engineering Structures,2005,27(10) : 1563-- 1574.
  • 9王鑫伟.微分求积法在结构力学中的应用[J].力学进展,1995,25(2):232-240. 被引量:90
  • 10袁玉全,彭建设.矩形薄板线性弯曲挠度的微分求积法研究[J].四川理工学院学报(自然科学版),2007,20(1):99-103. 被引量:9

二级参考文献5

共引文献98

同被引文献14

  • 1倪致祥,马涛.一种非简谐的微振动模型[J].大学物理,2006,25(9):14-16. 被引量:11
  • 2袁玉全,彭建设.复杂载荷下梁弯曲问题的微分求积法应用研究[J].四川理工学院学报(自然科学版),2006,19(5):81-84. 被引量:6
  • 3Bellman R, Casti J. Differential Quadrature and Long-term Integration[J]. Journal of Math Analysis and Applications, 1971, 34: 235-238.
  • 4Bert C W, Malik M. The Differential Quadrature Method in Computional Mechanics: a Preview[J]. Appl Mech Rev, 1996, 49(1): 1-28.
  • 5Ming-Hung Hsu. Vibration Analysis of Edge-cracked Beam on Elastic Foundation with Axial Loading Using the Differential Quadrature Method [J]. Comput Methods Appl Mech Engrg, 2005, 194 : 1 - 17.
  • 6Claudio Franciosi, Stefania Tomasiello. Static Analysis of a Bickford Beam by Means of the DQEM [J]. International Journal of Mechanical Sciences, 2007, 49:122 - 128.
  • 7Wu T Y,Liu G R.Application of the generalized differential quadrature rule to sixth-order differe-ntial equations[J].Communications in Numerical Methods in Engineering,2000,16(11):777-784.
  • 8Liu G R,Wu T Y.In-plane vibration analyses of circular arches by the generalized differential qua-drature rule[J].International Journal of Mechanical Sciences,2001,43,2597-2611.
  • 9Young-Jae Shin,Kyunng-Mun Kwon,Jong-Hak Yun.Vibration analysis of circular arches with variable cross-sections using differential transfor-mation and generalized differential quadrature[J].Journal of Sound and Vibration,2008,309:9-19.
  • 10Josef Henrych.The Dynamics of Arches and Frames[M].Elsevier Scientific Publishing Company,Amsterdam,Oxford and New York,1981.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部