期刊文献+

人工神经网络预测盐酸帕罗西汀缓释微丸的药物释放 被引量:2

Prediction of the Drug Release from Sustained Release Pellets of Paroxetine Hydrochloride by an Artificial Neural Network
下载PDF
导出
摘要 目的利用人工神经网络对盐酸帕罗西汀缓释微丸的释药行为进行预测。方法设计20个处方,其中16个处方作为训练处方,其余4个处方作为测试处方,制备盐酸帕罗西汀膜控释微丸,进行释放度检查。以致孔剂PVPK30的用量、包衣增重作为自变量,考察药物在各个取样点的累积释放量作为输出,建立盐酸帕罗西汀缓释微丸释药行为的人工神经网络预测模型。通过线性回归法、相似因子法、AIC法评价人工神经网络的预测能力。结果通过实测数据和BP神经网络预测结果比较,验证了人工神经网络的预测精度达0.989 9。结论用人工神经网络对盐酸帕罗西汀缓释微丸的释药行为进行预测,拟合度较高,从而为盐酸帕罗西汀缓释微丸的处方优化和释药行为预测提供了可行的依据。 OBJECTIVE To use an artificial neural network (ANN)to predict drug release from sustained release pellets of paroxetine hydrochloride. METHODS As model formulations,20 formulations of paroxetine pellets were prepared, 16 of which were set as training data,while the other 5 were for prediction. The amount of PVPK3o and coating level were selected as casual factors,and the accumulative drug release in each sampling time was used as response variables. A set of release parameters and causal factors were used as tutorial data for ANN and analyzed by computer. The predictive ability of the ANN model was assessed by comparing the linear regression equations ,similarity factors (f2) and AIC values of predicted against observed property values. RESULTS Comparing the predicted values with experimental data, R2 of the linear regression was 0. 989 9. CONCLUSION The prediction technique incorporating ANN showed a fairly good agreement between the observed values of release parameters and the predict results. Therefore, ANN provides a feasible way of optimizing and estimating drug release from sustained release pellets of paroxetine hydrochloride.
出处 《中国现代应用药学》 CAS CSCD 北大核心 2008年第6期520-524,共5页 Chinese Journal of Modern Applied Pharmacy
关键词 人工神经网络 盐酸帕罗西汀 微丸 缓释 预测 artificial neural networks paroxetine hydrochloride pellets sustained release prediction
  • 相关文献

参考文献12

  • 1KEITH S. Advances in psychotropic formulations [ J ]. Prog Neuropsychopharmacol Biol Psychiatry ,2006,30 ( 6 ) :996-1008.
  • 2范彩霞,梁文权,陈志喜,喻泽兰.人工神经网络预测HPMC缓释片中易溶性药物的释放[J].中国现代应用药学,2007,24(1):9-12. 被引量:2
  • 3TAKAYAMA K, FUJIKAWA M,OBATA Y,et al. Neural network based optimization of drug formulations [ J ]. Adv Drug Deliv Rev, 2003,55(9) :1217-1231.
  • 4PLUMB A P,ROWE R C,YORK P,et al. Optimisation of the predictive ability of artificial neural network (ANN) models: a comparison of three ANN programs and four classes of training algorithm[J]. Eur J Pharm Sci,2005,25(4-5) :395-405.
  • 5TURKOGLU M, VAROL H,CELIKOK M. Tableting and stability evaluation of enteric-coated omeprazole pellets[ J ]. Eur J Pharm Biopharm ,2004,57 ( 2 ) :279-286.
  • 6CHEN Y, MC CALL T W, BAICHWAL A R, et al. The application of an artificial neural network and pharmacokinetic simulations in the design of controlled-release dosage forms[ J]. J Control Release, 1999,59 ( 1 ) :33-41.
  • 7COSTA P, SOUSAL LOBO J M. Modeling and comparison of dissolution profiles[J]. Eur J Pharm Sci,2001,13 (2): 123- 133.
  • 8吴美珍,林一飞,范辉.人工神经网络在药物控释系统研究中的应用[J].中国现代应用药学,2004,21(4):281-283. 被引量:4
  • 9陈盛君,朱家壁.缓控释微丸制剂的研究进展[J].国外医学(药学分册),2004,31(3):177-181. 被引量:46
  • 10CRILLES C L,JORH M S,POUL B,et al. Validation of an image analysis method for estimating coating thickness on pellets [ J ]. Eur J Pharm Biopharm,2003,18(2) :191-196.

二级参考文献34

  • 1Hussain AS,Yu XQ,Johnson RD.Application of neural computing in pharmaceutical product development [J].Pharm Res,1991,8 (10):1248.
  • 2Leane MM,Cumming I,Corrigan OI.The use of artificial neural networks for the selection of the most appropriate formulation and processing variables in order to predict the in vitro dissolution of sustained release minitablets [J].AAPS Pharm Sci Tech,2003;4(2):E26.
  • 3Ebube NK,Owusu-Ababio G,Adeyeye CM,Preformulation studies and characterization of the physicochemical properties of amorphous polymers using artificial neural networks[J].Int J Pharm,196(2000)27.
  • 4Chen Y,MeCall TW,Baichwal AR,et al.The application of an artificial neural network and pharmacokinetic simulations in the design of controlled-release dosage forms[J].J Controlled Release,1999,59( 1 ):33.
  • 5Bozic DZ,Vrecer F,Kozjek F.Optimization of diclofenac sodium dissolution from sustained release formulations using an artificial neural network[J].Eur.J.Pharm.Sci,1997,5 ( 3 ):163.
  • 6Takayama K,Morva A,Fujikawa M,et al.Formula optimization of theophylline controlled-release tablet based on artificial neural networks [ J ].J Controlled Release,2000,68 ( 2 ):175.
  • 7Ibric S,Jovanovic M,Djuric Z,et al.Artificial neural networks in the modeling and optimization of aspirin extended release tablets with Eudragit L 100 as matrix substance [ J ].AAPS PharmSciTech,2003,4( 1 ):E9.
  • 8Peh KK,Lim CP,Quek SS,et al.Use of artificial neural networks to predict drug dissolution profiles and evaluation of network performance using similarity factor [J].Pharm Res,2000 17 ( 1 ):1384.
  • 9Yuksel N,Baykara T.Modelling of the solvent evaporation method for the preparation of controlled release acrylic microspheres using neural networks [ J ].J Microencapsulation,2000,17 ( 5 ):541.
  • 10Takayama K,Takabara J,Fulikawa M,et al.Formula optimization based on artificial neural networks in transdermal drug delivery[J].J Controlled Release,1999,62 (1-2):161.

共引文献49

同被引文献12

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部