摘要
提出一种基于改进型嵌入式隐马尔可夫模型的表情识别方法.首先通过视频人脸跟踪检验获取关键帧的感兴趣区域.然后利用二维离散余弦变换将人脸图像观测块转化为观测向量.最后实现嵌入式隐马尔可夫进行模型训练与表情识别.实验表明,采用嵌入式隐马尔可夫模型可有效识别表情,改进和优化后的设计方案识别效果良好.
An embedded hidden markov model (e-HMM) based approach for facial expression recognition is proposed. It makes use of an optimized set of observation vectors obtained from the 2D-DCT coefficients of the facial region of interest. The e-HMM is trained with segmental K-means algorithm and used for the facial expression recognition. The experimental results show the remarkable improvement of the performance and robustness of the facial expression recognition system.
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2008年第6期836-842,共7页
Pattern Recognition and Artificial Intelligence
基金
国家973重大基础研究前期研究专项项目(No.2005CCA04400)
国家自然科学基金项目(No.60672071)
教育部新世纪优秀人才计划项目(No.NCET-05-0534)资助