期刊文献+

基于改进粒子滤波器的移动机器人同时定位与建图方法 被引量:6

An Approach to Mobile Robot Simultaneous Localization and Mapping Based on Improved Particle Filter
原文传递
导出
摘要 提出一种基于改进粒子滤波器的移动机器人同时定位与建图方法.该方法将常规粒子滤波器与粒子群优化算法有机结合,引入最新的机器人观测信息以调整粒子的提议分布,从而在保证算法精度的同时,减少定位与建图所需的粒子数,并有效缓解粒子退化现象.此外,考虑到常规的重采样过程容易引起样本贫化现象,引入概率算子以增加粒子的多样性.实验结果表明该方法的可行性和有效性. An approach to mobile robot simultaneous localization and mapping (SLAM) based on an improved particle filter is presented. The standard particle filter and particle swarm optimization algorithm are incorporated into the filtering framework of the proposed approach. The newest observations are introduced to adjust proposal distribution of particles, and thus the necessary number of particles for localization and mapping is greatly reduced and the particle degeneracy problem is effectively abated. In addition, considering that the typical resampling process always leads to the loss of diversity in particles, a probabilistic operator is introduced to keep the diversity of particle swarm. Experimental results show the feasibility and effectiveness of the proposed approach.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2008年第6期843-848,共6页 Pattern Recognition and Artificial Intelligence
关键词 同时定位与建图(SLAM) 粒子滤波器 粒子群优化(PSO) 粒子退化 多样性 Simultaneous Localization and Mapping (SLAM), Particle Filter, Particle Swarm Optimization (PSO), Particle Degeneracy, Diversity
  • 相关文献

参考文献9

  • 1Durrant-Whyte H, Bailey T. Simultaneous Localization and Mapping (SLAM)-Part Ⅰ: The Essential Algorithms. Robotics & Automation Magazine, 2006, 13(2) : 99 - 108
  • 2Smith R C, Cheeseman P. On the Representation and Estimation of Spatial Uncertainty. International Journal of Robotics Research, 1987, 5(4) : 56 -68
  • 3Smith R C, Cheeseman P. Estimating Uncertain Spatial Relationships in Robotics//Proc of the Conference on Uncertainty in Artificial Intelligence. Cambridge, USA, 1988, 2(8) : 435 -461
  • 4Montermerlo M, Thrun S, Koller D, et al. FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem// Proc of the AAAI National Conference on Artificial Intelligence. Menlo Park, USA, 2002 : 593 - 598
  • 5Doucet A, Godsill S, Andrieu C. On Sequential Monte Carlo Sampiing Methods for Bayesian Filtering. Cambridge, UK : University of Cambridge, 1998 : 1 - 36
  • 6胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 7余洪山,王耀南.基于粒子滤波器的移动机器人定位和地图创建研究进展[J].机器人,2007,29(3):281-289. 被引量:14
  • 8Kennedy J, Eberhar R C. Particles Swarm Optimization// Proc of the IEEE Conference on Neural Networks. Perth, Australia, 1995 : 1942 - 1948
  • 9谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134. 被引量:422

二级参考文献79

  • 1胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 2夏克寒,许化龙,张朴睿.粒子滤波的关键技术及应用[J].电光与控制,2005,12(6):1-4. 被引量:34
  • 3[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930.
  • 4[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469.
  • 5[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100.
  • 6[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976.
  • 7[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948.
  • 8[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43.
  • 9[3]Millonas M M. Swarms Phase Transition and Collective Intelligence[M]. MA: Addison Wesley, 1994.
  • 10[4]Wilson E O. Sociobiology: The New Synthesis[M]. MA: Belknap Press,1975.

共引文献725

同被引文献69

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部