期刊文献+

基于判别模型的视频前景/阴影自动分割算法 被引量:6

Video Foreground and Shadow Automatic Segmentation Based on Discriminative Model
原文传递
导出
摘要 活动阴影是影响视频目标分割准确性的重要因素,有效检测与消除活动阴影是视频分割的一大难题.本文提出一种基于判别模型的前景/阴影自动分割算法.它能在室内户外多种环境中对活动阴影进行检测和消除.算法在像素级别上对背景、阴影以及前景进行建模,利用二维条件随机场对这些分布模型进行约束,通过概率图模型推断算法求出全局最优的分割结果.在实验中采用各种环境的视频数据对本文算法的有效性进行测试,并与其他分割算法的结果进行比较,证明本文算法的误分率较低. Moving cast shadows are factors affecting segmentation quality. Efficient shadow detection and removal is a difficult problem in video segmentation. A method based on discriminative model for video foreground and shadow segmentation is proposed. It has capability of shadow detection and removal under different scenes. The proposed algorithm models background, shadows and foreground at pixel levels. These models are constrained by using 2-dimensional conditional random fields. Inference algorithm of probabilistic graphical models is adopted to obtain globally optimal segmentation results. The experimental results demonstrate the validity of the proposed algorithm, and the results are compared with other algorithms by using outdoor and indoor video data.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2008年第6期849-855,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.60473106,No.60333010) 国家教育部博士点基金项目(No.20060335114) 浙江省教育厅项目(No.G20030433)资助
关键词 视频分割 活动阴影模型 二维条件随机场 Video Segmentation, Moving Shadow Models, 2-Dimensional Conditional Random Fields
  • 相关文献

参考文献22

  • 1Yang Tao, Li S Z, Pan Quan, et al. Real-Time and Accurate Segmentation of Moving Objects in Dynamic Scene// Proc of the 2nd ACM International Workshop on Video Surveillance and Sensor Networks. New York, USA, 2004:136-143
  • 2Stauffer C, Grimson W. Learning Patterns of Activity Using Real- Time Tracking. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22 (8) : 747 - 757
  • 3Stenger B, Ramesh V, Paragios N, et al. Topology Free Hidden Markov Models : Application to Background Modeling//Proc of the 8th IEEE International Conference on Computer Vision. Vancouver,Canada, 2001, Ⅰ: 294-301
  • 4Martel-Brisson N, Zaccarin A. Moving Cast Shadow Detection from a Gaussian Mixture Shadow Model // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, Ⅱ: 643 -648
  • 5Porikli F, Thornton J. Shadow Flow: A Recursive Method to Learn Moving Cast Shadows//Proc of the 10th IEEE International Conference on Computer Vision. Beijing, China, 2005, Ⅰ : 891 -898
  • 6Yoneyama A, Yeh C H, Kuo C C J. Moving Cast Shadow Elimination for Robust Vehicle Extraction Based on 2D Joint Vehicle/Shadow Models// Proc of the IEEE Conference on Advanced Video and Signal Based Surveillance. Miami, USA, 2003 : 229 - 236
  • 7Chen Baisheng, Lei Yunqi. Indoor and Outdoor People Detection and Shadow Suppression by Exploiting HSV Color Information // Proc of the 4th International Conference on Computer and Information Technology. Wuhan, China, 2004:137 - 142
  • 8Salvador E, Cavallaro A, Ebrahimi T. Cast Shadow Segmentation Using Invariant Color Features. Computer Vision and Image Understanding, 2004, 95(2): 238-259
  • 9查宇飞,楚瀛,王勋,马时平,毕笃彦.一种基于Boosting判别模型的运动阴影检测方法[J].计算机学报,2007,30(8):1295-1301. 被引量:9
  • 10褚一平,叶修梓,黄叶珏,张引,张三元.融合时空信息的前景/阴影视频分割算法[J].模式识别与人工智能,2008,21(4):546-551. 被引量:3

二级参考文献48

  • 1陈睿,邓宇,向世明,李华.结合强度和边界信息的非参数前景/背景分割方法[J].计算机辅助设计与图形学学报,2005,17(6):1278-1284. 被引量:13
  • 2Jabri S, Duric Z, Rosenfeld A, et al. Detection and location of people in video images using adaptive fusion of color and edge information [A]. In: Proceedings of International Conference on Pattern Recognition, Barcelona, Spain, 2000. 4627~4631
  • 3Cavallaro A, Ebrahimi T. Video object extraction based on adaptive background and statistical change detection [A]. In:Proceedings of SPIE Visual Communications and Image Processing, San Jose, California, 2001, 4310:465~475
  • 4Wren C R, Azarbayejani A, Darrel T, et al. Pfinder: Realtime tracking of human body [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 780~785
  • 5Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking [A]. In: Proceedings of International Conference on Computer Vision and Pattern Recognition, Fort Colins, Colombia, 1999. 246~252
  • 6Stauffer Chris, Grimson W Eric. Learning patterns of activity using real-time tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 747~758
  • 7Karmann K, yon Brandt A. Moving Object Recognition Using An Adaptive Background Memory [M]. In: Cappellini V,ed. Time-Varying Image Processing and Moving Object Recognition. Amsterdam: Elsevier Science, 1990. 289~296
  • 8Ridder Christof, Munkelt Olaf, Kirchner Harald. Adaptive background estimation and foreground detection using Kalmanfiltering [A]. In: Proceedings of International Conference on Recent Advances in Mechatronics, Istanbul, Turkey, 1995.193~ 199
  • 9Gloyer B, Aghajan H K, Siu K Y, et al. Video-based freeway monitoring system using recursive vehicle tracking [A]. In:Proceedings of SPIE Symposium on Electronic Imaging: Image and Video Processing, San Jose, California, 1995, 2421:173~ 178
  • 10Kato Jien, Watanabe Toyohide, Joga Sebastien, et al. An HMM-based segmentation method for traffic monitoring movies [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(9): 1291~1296

共引文献20

同被引文献63

  • 1杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 2王陈阳,周明全,耿国华.基于自适应背景模型运动目标检测[J].计算机技术与发展,2007,17(4):21-23. 被引量:19
  • 3侯叶,郭宝龙.基于图切割的人体运动检测[J].光电子.激光,2007,18(6):725-728. 被引量:11
  • 4AGGARWAL J K,CAI Q.Human motion analysis:a review[J].Computer Vision and Image Understanding,1999,73(3):428-440.
  • 5GAVRILA D M.The visual analysis of human movement:a survey[J].Computer Vision and Image Understanding,1999,73(1):82-98.
  • 6BASHIR F I,KHOKHAR A A,SCHONFELD D.Object trajectory based activity classification and recognition using hidden Markov models[J].IEEE Trans on Image Processing,2007,16 (7):1912-1919.
  • 7ZHU Guang-yu,XU Chang-sheng.Action recognition in broadcast tennis video[C] //Proc of the 18th International Conference on Patter Recognition.New York:IEEE,2006=251-254.
  • 8CHEN H S,CHEN H T,CHEN Y W,et al.Human action recognition using star skeleton[C] //Proc of the 4th ACM International Workshop on Video Surveillance and Sensor Networks.New York:ACM,2006:179-182.
  • 9EIGAMMAL A,HARWOODD,DAVIS L.Non-parametric model for background subtraction[C] //Proc of ECCV.London:SpringerVerlag,2000:751-767.
  • 10LEVENSHTEIN V L.Pinary codes capable of correcting deletions,insertions and reversals[J].Soviet Physics Doklady,1966,163 (4):707-710.

引证文献6

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部