期刊文献+

具有缺项系数的几类解析函数族的性质 被引量:2

The Properties of Several Classes of Analytic Functions with Missing Coefficients
下载PDF
导出
摘要 S~*表示所有在单位圆盘D内解析且满足条件f(0)=f′(0)-1=0的星形函数族,K表示所有在D内解析且满足条件f(0)=f′(0)-1=0的凸函数族,P表示所有在D内解析且满足条件p(0)=1,Rep(z)>0的函数族.设P_n={p(z):p(z)= 1+a_nz^n+a_(n+1)z^(n+1)+…∈P},S_n~*-{f(z):f(z)=z+a_nz^n+a_(n+1)z^(n+1)+…∈S~*},K_n={f(z):f(z)=z+a_nz^n+a_(n+1)z^(n+1)+…∈K}.L_(S_n~*)={g(z)=ln(f(z))/z,f∈S_n~*},其中对数函数取使得ln 1=0的那个单值解析分支.该文研究了函数族S_n~*,K_n和L_(S_n~*)的性质,找出了解析函数族L_(S_n~*)的极值点与支撑点,并对S_n~*与K_n的极值点和支撑点作了一些探讨. Let A be the class of functions, which are analytic in the unit disc D = {z : |z| 〈 1}, with with f(0) = f'(0) - 1 = 0. Let S* be the set of starlike functions, S* = {f(z) ∈A, Rezf'(z)/f(z)〉 0,z∈D}. Let K be the set of convex functions, K = {f(z) ∈ ,A, Re(1 + zf″(z)/f'(z)〉 0, z ∈D},P denotes the class of functions p(z), which are analytic in D and satisfy p(0) = 1, Rep(z) 〉 0. Let Pn = {p(z):p(z) = 1 +anz^n +an+1z^n+1 +…∈P}, Sn* = {f(z) : f(z) = z +anz^n +an+1z^n+1 +…∈ S*}, Kn={f(z) : f(z) = z+anz^n+an+1z^n+1+…∈ K}. Ls* = {g(z) = ln f(z)/z , f∈ Sn*}, where the logarithmic function satisfy in 1 =0. In this article the author investigated the properties of the classes Sn*, Kn and Lsn*. The author obstained the extreme points and support points of Ls*, and discussed the extreme points and support points of Sn* and Kn.
作者 彭志刚
出处 《数学物理学报(A辑)》 CSCD 北大核心 2008年第4期661-669,共9页 Acta Mathematica Scientia
基金 国家自然科学在金(10771053)资助
关键词 内闭一致收敛拓扑 极值点 支撑点. Topology of uniform convergence Extreme point Support point.
  • 相关文献

参考文献5

  • 1Holland F. The extreme points of a class of functions with positive real Dart. Math Ann, 1973, 202:85-87
  • 2Brickman L, MacGregor T H, Wilken K R. Convex hulls of some classical families of univalent functions. Trans Am Math Soc, 1971, 156:91-107
  • 3Hallenbeck D J, MacGregor T H. Support points of families of analytic functions described by subordination. Trans Am Math Soc, 1983, 278:523-546
  • 4Hallenbeck D J, MacGregor T H. Linear Problems and Convexity Techniques in Geometric Function Theory. Boston: Pitman, 1984
  • 5Peng Zhigang. The extreme points of several classes of analytic functions. Acta Mathematica Scientia, 1999, 19:409-416

同被引文献4

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部