期刊文献+

定义在迭代函数系统吸引子上的动力系统的平衡态

Equilibrium States of Dynamical Systems Definded on Attractors of Iterated Function Systems
下载PDF
导出
摘要 在该文中,令E表示一个迭代函数系统(X,T_1,…,T_m)的吸引子.定义连续自映射f:E→E为f(x)=T_j^(-1)(x),x∈T_j(E),j=1,…,m.给定φ∈C_R(E),令K_φ(δ,n)=sup{sum from k=0 to n-1{φ(f^kx)-φ(f^ky)]|:y∈B_x(δ,n)},这里B_x(δ,n)表示Bowen球.取一个扩张常数ε,记K_φ=sup_nK_φ(ε,n),定义υ(E)={φ:K_φ<∞).对f:E→E,作为Ruelle的一个定理[3,定理2.1]的一个应用,我们证明每个φ∈υ(E)具有惟一的平衡态.此结果推广了文献[12]中的主要结果. In this paper, let E denote the attrator of an iterated function system (X,T1,…,Tm). One can define a continuous self-mapping f : E → E by f(x) =Tj^-1(x),x∈Tj(E),j=1,…,m. Given φ∈CR(E), let Kφ(δ,n)=sup{|∑k=0 n-1[φ(f^kx)-φ(f^ky)]|:y∈Bx(δ,n)}, where Bx(δ, n) denotes the Bowen ball. Choosing an expansive constant ε, the authors write Kφ=supn Kφ(ε,n) and define V(E) = {φ : Kφ 〈 ∞}. For f : E → E, as some applications of a theorem by Ruelle^[3, Theorem 2.1] the authors show that each φ∈V(E) has a unique equilibrium state. The conclusions generalize the main result of Zhou and Luo.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2008年第4期779-784,共6页 Acta Mathematica Scientia
基金 国家自然科学基金(10571063 10771075) 广东省自然科学基金(05006515)资助
关键词 平衡态 吸引子 迭代函数系统 扩张 SPECIFICATION 最大熵测度 Equilibrium state Attractor Iterated function system Expansive Specification Measure with maximal entropy.
  • 相关文献

参考文献15

  • 1Bowen R. Some system with unique equilibrium states. Math Systems Theory, 1974, 8:193-202
  • 2Haydn N T A, Ruelle D. Equivalence of gibbs and equilibrium states for homeomorphisms satifying ex- pansiveness and specification. Commun Math Phys, 1992, 148:155-167
  • 3Ruelle D. Thermodnamic formalism for maps satisfying positive expansiveness and specification. Nonliearity, 1992, 5:1223-1236
  • 4Sinai Y G. Gibbs measure in ergodic theory. Russian Math Surveys, 1972, 27:21-70
  • 5Bowen R. Equilibrium States and the Ergodic Theory of Anosov Differmorphisms (Lect Notes in Math 470). Berlin: Springer, 1975
  • 6Ruelle D. Thermodynamic Formalism Encyclopedia of Mathematics and its Applications. MA: Addison- Wesley, 1978
  • 7Hutchinson J E. Fractals and self similarity. Indian Uni Math J, 1981, 30:713-747
  • 8Bedford T. Application of Dynamical Systems Theorey to Fractals-a Study of Cookie-Cutter Sets. Fractal Geometry and Analysis. Netherlands: Kluwer, 1991
  • 9Eills D B, Branton M G. Non-Self-Similar Attractors of Hyperbolic Iterated Function Systems. Dynamical Systems (Lect Notes in Math 1342). Berlin: Springer, 1988
  • 10Falconer K. Techniques in Fractal Geometry. New York: John Wiley and Sons, 1998

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部