期刊文献+

弱Hopf代数上的弱Alternative Doi-Hopf模

Alternative Doi-Hopf Modules over Weak Hopf Algebras
下载PDF
导出
摘要 该文首先引入了弱Hopf代数上的弱Alternative Doi—Hopf模,然后构造了从弱Alter—native Doi-Hopf模范畴到模范畴(余模范畴)忘却函子的伴随函子. In this paper, we first introduce the notion of weak alternative Doi-Hopf modules, and then mainly give the construction of adjoint functor to the functor from the category of weak alternative Doi-Hopf modules to the category of modules (resp. comodules) disregarding the coaction (resp. the action).
作者 贾玲 李方
出处 《数学物理学报(A辑)》 CSCD 北大核心 2008年第6期1067-1076,共10页 Acta Mathematica Scientia
基金 浙江省自然科学基金(102028) 鲁东大学博士基金(LY20062703)资助
关键词 弱HOPF代数 弱Alternative Doi—Hopf模 Weak Hopf algebra Weak alternative Doi-Hopf module.
  • 相关文献

参考文献10

  • 1Bohm G. Doi-Hopf modules over weak Hopf algebras. Comm Algebra, 2000, 28:4687-4698.
  • 2Bohm G, Nill F, Szlachanyi K. m Weak Hopf algebras (I): integral theory and C*-structure. J Algebra, 1999, 221:385- 438.
  • 3Bohm G, Nill F, Szlachanyi K. Weak Hopf algebras (II): representation theory, dimensions and the Markov trace. J Algebra, 2000, 233(1): 156-212.
  • 4Caenepeel S, Militaru G, Zhu S. Crossed modules and Doi-Hopf modules. Israel J Algebra, 1997, 100: 221-247.
  • 5Caenepeel S, Militaru G, Zhu S. Doi-Hopf modules, Yetter-Drinfele modules and Frobenius type properties. Trans Amer Math Soc, 1997, 349:4311- 4342.
  • 6Caenepeel S, Militaru G, Zhu S. Frobenius and Separable Functors for Generalized Module Categories and Nonlinear Equations. Lecture Notes In Mathematics, 1787. Heidelberg: Springer-verlag, 2004.
  • 7Doi Y. Unifying Hopf modules. J Algebra, 1992, 153:373- 385.
  • 8Nill F. Axioms for weak bialgebras. Math, QA/9805104.
  • 9Nill F, Szlachanyi K, Wiesbrock H W. Weak Hopf algebras and reducible jones inclusions of depth 2 I: from crossed products to jones towers. Math, QA/9806130.
  • 10Dmitri Nikshych, Vladimir Turaev, Leonid Vainerman. Invariants of knots and 3-manifolds from quantum groupoids. Topology Appl, 2003, 127(1/2): 91-123.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部