期刊文献+

位错热激活滑移的数值模拟 被引量:1

SIMULATION OF THERMALLY ACTIVATED DISLOCATION SLIP
下载PDF
导出
摘要 在三维离散位错动力学模型中,用Langevin力描述温度对位错的影响作用,模拟了位错克服晶格Peierls应力与阻尼应力的滑移过程.模拟结果表明,位错克服Peierls应力的热激活效应随温度的升高而增大,随应变率的增高而减小.利用热激活本构模型描述了位错热激活滑移过程,拟合了Peierls应力的激活能,结果表明含温度的离散位错动力学模型能较正确地模拟位错的热激活滑移过程.但Peierls阻碍的非离散化处理使激活能与指前因子均随温度升高而增大,这表明离散位错动力学模型模拟Peierls阻碍存在不足之处,其本质原因是介观级的位错动力学模型目前还无法正确模拟微观级的位错芯性质. Using the Langevin force to describe the effect of temperature on the dislocation behavior, the slip of dislocation overcoming the Peierls stress and drag stress is simulated by the three-dimensional discrete dislocation dynamics model. Numerical results indicate that the thermally activated effect of dislocation overcoming the Peierls stress increases with temperature increasing, and decreases with strain rate increasing. Finally, using the thermally activated constitutive model to describe the thermally activated slip of dislocation, the activation energy of Peierls stress is obtained by fitting simulation data. The results show that the discrete dislocation dynamics model,which contains the temperature effect, can correctly simulate the thermally activated slip of dislocation. But the non-discrete slip of dislocation makes the activation energy and the pre-exponential factor increase with temperature increasing, which indicates a shortcoming exists in the present discrete dislocation dynamics model for simulating the slip of dislocation overcoming the Peierls stress. The essential reason is that the microscopic property of the dislocation core can not be simulated precisely in the present mesoscale dislocation dynamics model.
出处 《固体力学学报》 CAS CSCD 北大核心 2008年第4期389-395,共7页 Chinese Journal of Solid Mechanics
基金 中国工程物理研究院科学技术发展基金(2007B04004)资助
关键词 位错动力学 热激活滑移 Peierls应力 数值模拟 dislocation dynamics, thermally activated slip, Peierls stress, numerical simulation
  • 相关文献

参考文献16

  • 1Hirth J P, Lothe J. Theory of Dislocation[M]. New York:Weiley, 1982,132-228.
  • 2Rhee M,Zbib H M, Hirth J P,et al. Models for long-/ short-range interactions and cross slip in 3D dislocation simulation of BCC single crystals[J]. Modelling and Simulation in Materials Science and Engineering, 1998,6 : 467-492.
  • 3Kubin L P,Devincre B,Tang M. Mesoscopic modeling and simulation of plasticity in FCC and BCC crystals dislocation intersections and mobility[J]. Journal of Computer-Aided Materials Design, 1998,5 : 31-54.
  • 4Tang M,Kubin L P,Canova G R. Dislocation mobility and the mechanical response of BCC single crystals a mesoscopic approach [J]. Acta Materialia, 1998,46 : 3221-3235.
  • 5Monnet G, Devincre B, Kubin L P. Dislocation study of prismatic slip systems and their interactions in hexagonal close packed metals application to zirconium[J]. Acta Materialia, 2004,52 : 4317-4328.
  • 6Verdier M, Fivel M,Groma I. Mesoscopic scale simulation of dislocation dynamics in FCC metals princi-ples and applications[J]. Modeling & Simulation of Material Science & Engineering, 1998,6 : 755-770.
  • 7Ronnpagel D,Streit T, Pretorius T. Including thermal activation in simulation calculations of dislocation glide[J]. Physica Status Solidi (a), 1993, 135: 445- 454.
  • 8Mohles V,Rnnpagel D. Thermal activation analysis of dislocations in obstacle fields[J]. Computational Materials Science, 1996,7 : 98-102.
  • 9Hiratani M, Zbib H M, Khaleel M A. Modeling of thermally activated dislocation glide and plastic flow through local obstacles[J]. International Journal Plasticity. 2003,19 : 1271-1296.
  • 10Kocks U F, Argon A S, Ashby M F. Thermodynamics and Kinetics of Slip[M]. 1st ed. England: Pergamon, 1975,110-170.

同被引文献15

  • 1Hiratani M,Zbib H M,Khaleel M A.Modeling of thermally activated dislocation glide and plastic flow through local obstacles[J].International Journal Plasticity,2003.19(9):1271-1296.
  • 2闫红霞.基于位错理论的金属塑性变形本构关系的研究[D].杭州:浙江大学,2011.
  • 3Mecking H,Kocks U F.Kinetics of flow and strainhardening[J].Acta Metallurgica,1981.29(11):1865-1875.
  • 4Bergstrm Y,Hallén H.An improved dislocation model for the stress-strain behavior of polycrystallineα-Fe[J].Materials Science and Engineering,1982.55(1):49-61.
  • 5Kleemola H J,Niemenen M A.On the strain-hardening parameters of metals[J].Metallurgical and Materials Translation B,1974.5(8):1863-1866.
  • 6Laasraoui A,Jonas J J.Prediction of steel flow stresses at high temperatures and strain rates[J].Metallurgical Transactions A(Physical Metallurgy and Materials Science),1991.22A(7):1545-1558.
  • 7王立影,林建平,王芝斌.超高强度钢热变形方程[J].塑性工程学报,2010,17(1):88-92. 被引量:5
  • 8李肖科,周隐玉,刘芳,陈泽中.高强度硼钢22MnB5的热变形方程及其模拟应用[J].塑性工程学报,2011,18(6):53-57. 被引量:9
  • 9刘凯,鲁世强,郑海忠,刘大博,刘天琦.300M钢的热变形行为及其变形组织演变研究[J].锻压技术,2012,37(1):149-153. 被引量:15
  • 10姜超,单忠德,庄百亮,戎文娟,张密兰.热冲压成形22MnB5钢板的组织和性能[J].材料热处理学报,2012,33(3):78-81. 被引量:56

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部