期刊文献+

单模大扰动的Richtmyer-Meshkov不稳定性 被引量:2

High-amplitude single-mode perturbation evolution of Richtmyer-Meshkov instability
下载PDF
导出
摘要 采用高精度的多介质Ghost-Fluid方法,对马赫数为1.15的激波分别作用于单模大扰动Air-CO2、Air-SF6、Air-N2和Air-He界面后的Richtmyer-Meshkov不稳定现象进行了数值研究,得到了不同时刻扰动界面的演化图像,给出了流场的密度等值线和密度纹影图,同实验结果吻合较好。给出了界面的扰动增长随时间变化的情况,并同理论模型进行了对比。对激波从轻气体进入重气体的情况,扰动增长可采用Sadot模型描述线性阶段和早期非线性阶段;对于弱激波同密度接近的气体界面的相互作用,线性阶段时间较长,可用线性模型描述。 The high-amplitude single-mode Richtmyer-Meshkov instability is simulated by using the high-resolution ghost-fluid method. The initial conditions and computational domain are modeled after the single-mode, 1.15-Mach, shock tube experiment by Jourdan G, et al. Four test examples are presented with the evolutions of the air-CO2, air-SF6, air-N2and air-He interfaces, including density and shading contours. The simulated amplitudes are in agreement with the experimental data and the predictions of the theoretical models. The perturbation growths for the light-heavy (air-SF6and air-CO2) cases agree well with the nonlinear model of Sadot O, et al. At the close density (air-N2) interface acting with the weak shock wave, the slow evolution can be described by the linear theory.
出处 《爆炸与冲击》 EI CAS CSCD 北大核心 2008年第5期407-414,共8页 Explosion and Shock Waves
基金 国家自然科学基金委员会与中国工程物理研究院联合基金项目(10376035) 中国博士后科学基金项目(2004036160)
关键词 爆炸力学 Riehtmyer-Meshkov不稳定性 Ghost-Fluid方法 激波 扰动 mechanics of explosion Richtmyer-Meshkov instability ghost-fluid method shock perturbation
  • 相关文献

参考文献9

  • 1Brouillette M. The Richtmyer-Meshkov instability[J]. Annual Review of Fluid Mechanics, 2002,34:445-468.
  • 2Richtmyer R D. Taylor instability in shock acceleration of compressible fluids[J]. Communications on Pure Applied Mathematics, 1960,13 : 297-319.
  • 3Meshkov E E. Instability of a shock wave accelerated interface between two gases[R]. NASATTF-13-074, 1970.
  • 4Zhang Q, Sohn S I. Nonlinear theory of unstable fluid mixing driven by shock waves[J]. Physics of Fluids, 1997, 9:1106-1124.
  • 5Sadot O, Erez L, Alon U, et al. Study of nonlinear evolution of single-mode and two-bubble interaction under Richtmyer-Meshkov instability[J]. Physical Review Letters, 1998,80(8):1654-1657.
  • 6Vandenboomgaerde M, Mtigler C, Gauthier S. Impulsive model for the Richtmyer-Meshkov instability[J]. Physical Review: E, 1998,58(2) :1874-1882.
  • 7Jourdan G, Houas L. High-amplitude single-mode perturbation evolution at the Riehtmyer-Meshkov instability[J]. Physical Review Letters, 2005,95,204502.
  • 8Latini M, Schilling O, Don W S. High-resolution simulations and modeling of reshoeked single-mode Richtmyer- Meshkov instability: Comparison to experimental data and to amplitude growth model predietions[J]. Physics of Fluids, 2007,19,024104.
  • 9Duff R E, Harlow F H, Hirt C W. Effects of diffusion on interface instability between gas[J]. Physical of Fluids, 1962,5(4) :417-425.

同被引文献18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部