期刊文献+

基于信用度分类遮挡问题解决方法 被引量:1

Using Credit Coefficients to Solve Occlusion Problems in the Stereo Vision
下载PDF
导出
摘要 在基于立体视觉的立式风洞飞机尾旋姿态测量过程中,遮挡问题是困扰测量的一个难题。遮挡问题的常用解决方法需要恢复连续的被遮挡空间,计算量大,且不容易保证精度。针对特征点测量的遮挡问题,本文提出一种基于信用度分类的解决方法,在被遮挡空间搜索感兴趣点的最佳近似,并且通过引入信用度因子的组合计算,控制和提高最佳近似点的计算精度。文中分析了辅助计算点的测量误差所带来的搜索定位困难,信用度因子的引入可以弱化不精确辅助点对搜索结果的影响,使搜索过程主要依赖可靠的点进行。最后,通过仿真实验分析了该方法的可靠性,并说明其在飞机尾旋运动测量实验中对测量结果的有效改善。 In the course of determining the aircraft model attitude in the spin time based on the stereo vision, the occlusion causes much trouble. A new way based on the credit coefficients is shown and it is mainly applicable to the problems with feature matching. In the occlusion problems, it is always the hardest to get the best optimal estimation of the occluded parts. The credit coefficients can weaken the effect of the features with poor definition. So the course for searching the occluded features is mainly based on the reliable features. Simulations and experiments on real images validate the reliability of our method and the results are good enough for the aircraft spin experiment.
出处 《光电工程》 EI CAS CSCD 北大核心 2008年第12期89-95,共7页 Opto-Electronic Engineering
基金 国家部委级基金资助项目
关键词 立体视觉 遮挡问题 信用度 飞机尾旋 测量 stereo vision occlusion credit coefficient aircraft spin measure
  • 相关文献

参考文献12

  • 1Mark W R. Post'rendering 3D Image Warping: Visibility, Reconstruction, and Performance for Depth.Image Warping [D]. Chapel Hill, NC. USA: University of North Carolina, 1999.
  • 2MeMillan L. A List Priority Rendering Algorithm for Redisplaying Projected Surfaces. Report TR95-005 [R]. Chapel Hill, NC, USA: Department of Computer Science, University of North Carolina, 1995.
  • 3Black James, Ellis Tim. Multi camera image tracking [J]. Image and Vision Computing, 2006, 24(6): 1256-1267.
  • 4KIM Kyungnam, DAVIS Larry S. Multi-camera tracking and segmentation of occluded people on ground plane using search-guided particle filtering [J]. European Conference on Computer Vision, 2006, 3954: 98-109.
  • 5Tyagi Ambrish, Potamianos Gerasimos, Davis James W, et al. Fusion of multiple camera views for kernel-based 3D tracking [C]//IEEE Workshop on Motion and Video Computing. Austin, TX, USA: IEEE Press, 2007: 1-8.
  • 6Cucchiara R, Grana C, Tardini G, et al. Probabilistic people tracking for occlusion handling [C]// Proceedings of the 17th International Conference on ICPR 2004. Cambridge, UK: IEEE Press, 2004, 1: 132-135.
  • 7Eng How-Lung, Wang Junxian, Kam Alvin H, et al. A Bayesian framework for robust human detection and occlusion handling using human shape model [C]// Proceedings of the 17th International Conference on ICPR 2004. Cambridge, UK: IEEE Press, 2004, 2: 257-260.
  • 8Senior Andrew, Hampapur Arun, Tian Ying-Li, et al. Appearance models for occlusion handling [J]. Image and Vision Computing, 2006, 24(11): 1233-1243.
  • 9Ramanan Deva, Forsyth David A, Zisserman Andrew. Tracking People by Leaming Their Appearance [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2007, 29(1): 65-81.
  • 10Ristivojevic Mirko, Konrad Janusz. Space-time image sequence analysis: object tunnels and occlusion volumes [J]. IEEE Transactions on Image Processing, 2006, 15(2): 364-376.

二级参考文献58

  • 1刘相滨,向坚持,王胜春.人行为识别与理解研究探讨[J].计算机与现代化,2004(12):1-5. 被引量:12
  • 2魏志强,纪筱鹏,冯业伟.基于自适应背景图像更新的运动目标检测方法[J].电子学报,2005,33(12):2261-2264. 被引量:54
  • 3Oliver N,Horvitz E.A comparison of HMMs and dynamic Bayesian networks for recognizing office activities[J].Lecture Notes in Artificial Intelligence,2005,3538:199-209.
  • 4Kolonias I,Christmas W,Kittler J.Use of context in automatic annotation of sports videos[J].Lecture Notes in Computer Science,2004,3287:1-12.
  • 5Park S,Aggarwal J K.A hierarchical Bayesian network for event recognition of human actions and interactions[J].Multimedia Systems,2004,10(2):164-179.
  • 6Lafferty J,Mccallum A,Pereira F.Conditional random fields:probabilistic models for segmenting and labeling sequence data[A].In Proc ICML[C].Massachusetts:IEEE press,2001,282-289.
  • 7Sminchisescu C,Kanaujia A,Li Z,Metaxas D.Conditional models for contextual human motion recognition[A].In Proc ICCV[C].Beijing:IEEE Computer Society Press,2005.2:1808-1815.
  • 8Luhr S,Bui H H,Venkatesh S,West G A W.Recognition of Human Activity through Hierarchical Stochastic Learning[A].In Proc.PerCom[C].Texas:IEEE Computer Society Press,2003.416-422.
  • 9Duong T V,Bui H H,Phung D Q,Venkatesh S.Activity recognition and abnormality detection with the switching hidden semi-Markov model[A].In Proc CVPR[C].San Diego:IEEE Computer Society Press,2005.838-845.
  • 10Nguyen N T,Venkatesh S,West G A W.Learning people movement model from multiple cameras for behaviour recognition[J].Lecture Notes in Computer Science,2004,3138:315-324.

共引文献84

同被引文献14

  • 1THOMPSON W B, MUTCH K M, BERZINS V A. Dynamic occlusion analysis in optical flow fields[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1985, 7(4):374-383.
  • 2MAVER J, BAJCSY R. Occlusions as a guide for planning the next view[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(5):417-433.
  • 3ZITNICK C L, KANADE T. A cooperative algorithm for stereo matching and occlusion detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(7): 675-684.
  • 4PANG C C C, LAM W W L, YUNG N H C. A novel method for resolving vehicle occlusion in a monocular traffic-image sequence[J]. IEEE Transactions on Intelligent Transportation Systems,2004,5(3):129-141.
  • 5GENTILE C,CAMPS O,SZNAIER M. Segmentation for robust tracking in the presence of severe occlusion[C]// Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE,2004,132: 483-489.
  • 6ZHANG W, WU Q, YANG X, et al. Multilevel framework to detect and handle vehicle occlusion[J]. IEEE Transactions on Intelligent Transportation Systems,2008, 9(1):161-174.
  • 7薛陈,朱明,刘春香.遮挡情况下目标跟踪算法综述[J].中国光学与应用光学,2009,2(5):388-394. 被引量:26
  • 8颜佳,吴敏渊.遮挡环境下采用在线Boosting的目标跟踪[J].光学精密工程,2012,20(2):439-446. 被引量:22
  • 9张彦超,许宏丽.遮挡目标的分片跟踪处理[J].中国图象图形学报,2014,19(1):92-100. 被引量:15
  • 10李文羽,程隆棣.基于机器视觉和图像处理的织物疵点检测研究新进展[J].纺织学报,2014,35(3):158-164. 被引量:51

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部