期刊文献+

基于改进的MFCC战场被动声目标识别 被引量:7

Battlefield Passive Acoustic Target Identification Based on Improved MFCC
下载PDF
导出
摘要 从战场声信号与语音信号特征的相似性出发,提出基于MFCC参数的战场声目标识别方法。针对战场环境存在强噪声干扰情况,提出一种改进的MFCC特征参数(DWTMFCC)提取方法,该方法将小波分析和Mel倒谱分析结合,提高了特征参数的鲁棒性。仿真结果表明:在噪声条件下,利用DWTMFCC参数进行声目标识别,平均识别率比MFCC参数高出3.134个百分点,信噪比为5dB时,识别率仍达到93.67%。 Abstract:Beginning with the similarity between battlefield acoustic signal and speech signal, a new battlefield acoustic target identification method was proposed based on Mel frequency cepstrum coefficient(MFCC). As stronger noise exists in battlefield, an improved MFCC parameter (DWTMFCC) was presented. The DWTMFCC parameter extraction combined discrete wavelet transform (DVCT) analysis with Mel frequency cepstrum analysis, and its robustness was improved. The simulation result shows that the identification ratio using DWTMFCC is improved by 3. 134% compared with MFCC under noisy environment. When the SNR is 5dB, the identification ratio is up to 93.67%.
机构地区 解放军理工大学 [
出处 《弹箭与制导学报》 CSCD 北大核心 2008年第6期231-234,共4页 Journal of Projectiles,Rockets,Missiles and Guidance
关键词 被动声目标 目标识别 美尔倒谱参数 离散小波变换 鲁棒性 passive acoustic target target identification MFCC discrete wavelet transform robust
  • 相关文献

参考文献3

  • 1陈功.战场被动声目标识别关键技术的研究[D].南京:解放军理工大学,2007:1-5.
  • 2丁爱民.基于MFCC和GMM的说话人识别系统研究[D].南京:河海大学,2006:29-34.
  • 3Linde Y, Buzo A, Gray M R. An algorithm for vector quantizer design[J]. IEEE Transactions on Communications, 1980,28 (1) : 84-- 95.

共引文献3

同被引文献22

  • 1李朝晖,迟惠生.听觉外周计算模型研究进展[J].声学学报,2006,31(5):449-465. 被引量:22
  • 2陈功,张雄伟.基于ICA和HMM的战场混叠声目标识别[J].弹道学报,2007,19(1):92-96. 被引量:3
  • 3Farooq O,Datta S.Mel filter-like admissible wavelet packet structure for speech recognition[J].IEEE Signal Processing Letters,2001,8(7):196-198.
  • 4陈功.战场被动声目标识别关键技术的研究(博士论文)[D].解放军理工大学,2007.12-15.
  • 5Liu Hui, Jun-an Yang. A novel approach research on low altitude passive acoustic target recognition based on ICA and HMM [A]. Fourth International Conference on Natural Computation [C]. 2008, 10(5): 371-375.
  • 6Huang XD, Jack MA. Semi-continuous Hidden Markov models for speech signals [J].Computer Speech and Language, 1989, 3(2): 239-251.
  • 7Ben-Yishai. A Discriminative Training Algorithm for hidden markov models [J]. IEEE Trans Speech and Audio Processing, 2004, 12(3): 204-217.
  • 8H Jiang, O Siohan, F Soong and CH Lee. A dynamic insearch discriminative training approach for large vocabulary speech recognition [A]. ICASSP'2002 [C]. 2002, 5(14): 113-116.
  • 9Hui Jiang, Xinwei Li, Chaojun Liu. Large Margin hidden Markov Models for Speech Recognition [J]. IEEE Transactions on Audio, Speech and Language Processing, 2006, 9(5): 1584-1594.
  • 10Y Altun, T Hofmann. Large margin methods for label sequence learning [A]. Eurospeech 2003 [C]. 2003. 993-996.

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部