摘要
设(X,μ)是一个没有原子的概率测度空间,则测度μ可视为由单位质量经反复细分所获得的测度.证明从(X,μ)到([0,1),m)的保测映射的存在性.作为这个结果的应用,给出了空间L2(X,μ)上的标准正交系的构造方法.最后,具体给出L2(C,μc)上的一个标准正交系,其中C是三分Cantor集,cμ是Cantor测度.
Let (X,μ) be a probability measure space with no atoms. Then μ can be regarged as a measure defined by repeated subdivision. It proved that there is a measure-preserving transformation from(X,/1) to ([0, 1),m), As an application of this result, gives a method for constructing an orthonormal system on L2 (X,μ). Finally, obtains an orthonormal system on L2 (C,μc), where C is the middle-third Cantor set, μc is the Cantor meausre.
出处
《湖北大学学报(自然科学版)》
CAS
北大核心
2008年第4期340-342,共3页
Journal of Hubei University:Natural Science
基金
国家自然科学基金(10171028)资助课题
关键词
测度
原子
可测函数
标准正交系
measure
atom
measurable function
orthonormal system