期刊文献+

EMD-SVM非线性组合模型对高炉铁水含硅量的预测 被引量:3

Prediction of silicon content in hot metal based on EMD-SVM nonlinear combined model
下载PDF
导出
摘要 提出了一种基于经验模式分解(EMD)和支持向量机(SVM)的非线性组合模型的预测方法.该方法运用EMD将原始铁水含硅量的时间序列分解成若干个频率不同的平稳分量,分解后的分量突出了原序列的局部特征.通过Lempel-Ziv复杂度分析选用不同的核函数,并利用10-fold交叉检验方法取定相应的参数,从而对各个分量构建不同的支持向量机模型,并对各分量进行预测.仿真结果表明,EMD-SVM非线性组合模型预测命中率达到90%. In the blast furnace (BF) ironmaking process, the silicon content in hot metal which reflects the thermal state of BF is an important index. In order to predict the silicon content in hot metal effectively and level up the forecasting accuracy, a combined model based on Empirical Mode Decomposition (EMD) and Support Vector Machine (SVM) is proposed. Firstly, the time series data of silicon content in hot metal are decomposed into a series of stationary intrinsic mode functions (IMFs) in different scale space via the EMD sifting procedure. The local features of original time series data are prominent in the IMFs. Secondly, based on the analysis of Lemple-Ziv complexity and 10-fold cross validation, the right kernel functions and their parameters are chosen to build different SVMs respectively to predict each IMF. Finally, the predicted results of all IMFs are reconstructed to obtain the final predicted result. The result shows that the prediction is successful and the hit rate increased to 90 %.
作者 王义康
出处 《中国计量学院学报》 2008年第4期355-359,共5页 Journal of China Jiliang University
关键词 经验模式分解 支持向量机 铁水含硅量 组合模型 empirical mode decomposition support vector machine silicon content in hot metal combined model
  • 相关文献

参考文献12

  • 1SAXEN H. Short-term prediction of silicon content in pig iron[J].Canadian Metallurgical Quarterly, 1994, 33 (4) : 319-326.
  • 2CHEN J. A predictive system for blast furnaces by integraring a neural network with qualitative analysis[J]. Engi neering Applications of Artificial Intelligence, 2001,14 (1):77-85.
  • 3JIMENEZ J, MOCHON J, AYALA J S, et al. Blast furnace hot metal temperature prediction through neural networks-based models[J]. ISIJ Int, 2004,44(3) :573-580.
  • 4郜传厚,周志敏,邵之江.高炉冶炼过程的混沌性解析[J].物理学报,2005,54(4):1490-1494. 被引量:12
  • 5LUO S H, LIU X G, ZHAO M. Using generalized iterated function systems to model BF hot metal silicon content sequences[C]//IEEE 6^th WCICA. Dalian City: IEEE, 2006 : 7766-7770.
  • 6HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Pro R Soc Lond, 1998,454 : 903-995.
  • 7CRISTIANINI N, SHAWE-TAYLOR J. An introduction to support vector machines and other kernel-based learning methods[M]. Cambridge: Cambridge Uni Press, 2000 : 93- 122.
  • 8BURGES C. A tutorial on support vector machines for pattern recognition[J3. Data Mining and Knowledge Discovery, 1998,2(2):121-127.
  • 9VAPNIK V N. Statistical learning theory[M]. New York: Wiley, 1998:1926-1940.
  • 10LANCKRIET G, CRISTIANINI N, BARTLETT P, et al. Learning the kernel matrix with semidefinite programming[J]. Journal of Machine Learning Research, 2004 (5) ,27-72.

二级参考文献14

  • 1郜传厚,周志敏.高炉铁水Si含量的修正混沌加权一阶局部预报[J].物理学报,2004,53(12):4092-4097. 被引量:12
  • 2Miyano T, Kimoto S, Shibuta H et al 2000 Physica D 135 305.
  • 3Claude S 1967 lronmaking Proc. Metall. Soc. AIME 21 66.
  • 4Pandit S M, Clum J A, Wu S M 1975 Ironmaking Proc. Metall.Soc. AIME 34 403.
  • 5Singh H, Sridhar N V, Deo B 1996 Steel Res. 67 521.
  • 6Yao B, Yang T J, Ning X J 2000 J. Univ. Sci. Technol. Beijing 7 269.
  • 7Schouten J C, Takens F, Bleek C M 1994 Phys. Rev. E 49 126.
  • 8Kantz H, Schreiber T 2001 Nonlinear Time Series Analysis ( Beijing:Tsinghua University Press) p198.
  • 9Packard N H, Grutchfield J P, Farmer J D et al 1980 Phys. Rev.Lett. 45 712.
  • 10Takens F 1981 Lect. Notes. Math. 898 366.

共引文献11

同被引文献28

  • 1潘仲.带钢厚度变化对张力测量精度的影响及修正方法[J].宝钢技术,2010,3(1):1-4. 被引量:1
  • 2徐保国,胡立萍.基于支持向量机的非线性系统模型预测控制[J].计算机测量与控制,2005,13(8):799-801. 被引量:10
  • 3吴志祥,周兆德,陶忠良,曹建华.海南省农民收入灰关联分析[J].华南热带农业大学学报,2006,12(1):55-58. 被引量:3
  • 4Chang C C,Lin C J.LIBSVM a library for support vector machines [EB/OL].2011-12-3:http://www.csie.ntu.edu.tw/cjlin/libsvm.
  • 5Lin D C,Guo Z L,An F P,et al.Elimination of end effects in em-pirical mode decomposition by mirror image coupled with support vector regres.
  • 6Huang N E,et al.A confidence limit for the Empirical Mode De-composition and Hilbert spectral analysis [J].Proc.Royal Soe.London A,2003,459(3):2317-2345.
  • 7An S J,Liu W Q,Venkatesh S.Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression [J].Pattern Recognition,2007,40(8):2154-2162.
  • 8V,V.The nature of statistical learning theory [M ]. New York: Springer, 1999 : 78-82.
  • 9HUANGN N E ,SHEN Z,LONG S R.The empirical mode de- composition and the Hilbert spectrum for nonlinear and non- stationary time series analysis[J].Proceedings of the Royal So- ciety, 1998,454 ( 1971 ) : 903-955.
  • 10C C,V V.Support-vector networks[J].Machine Learning, 1995 (3) :273-297.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部