摘要
提出了一种基于经验模式分解(EMD)和支持向量机(SVM)的非线性组合模型的预测方法.该方法运用EMD将原始铁水含硅量的时间序列分解成若干个频率不同的平稳分量,分解后的分量突出了原序列的局部特征.通过Lempel-Ziv复杂度分析选用不同的核函数,并利用10-fold交叉检验方法取定相应的参数,从而对各个分量构建不同的支持向量机模型,并对各分量进行预测.仿真结果表明,EMD-SVM非线性组合模型预测命中率达到90%.
In the blast furnace (BF) ironmaking process, the silicon content in hot metal which reflects the thermal state of BF is an important index. In order to predict the silicon content in hot metal effectively and level up the forecasting accuracy, a combined model based on Empirical Mode Decomposition (EMD) and Support Vector Machine (SVM) is proposed. Firstly, the time series data of silicon content in hot metal are decomposed into a series of stationary intrinsic mode functions (IMFs) in different scale space via the EMD sifting procedure. The local features of original time series data are prominent in the IMFs. Secondly, based on the analysis of Lemple-Ziv complexity and 10-fold cross validation, the right kernel functions and their parameters are chosen to build different SVMs respectively to predict each IMF. Finally, the predicted results of all IMFs are reconstructed to obtain the final predicted result. The result shows that the prediction is successful and the hit rate increased to 90 %.
出处
《中国计量学院学报》
2008年第4期355-359,共5页
Journal of China Jiliang University
关键词
经验模式分解
支持向量机
铁水含硅量
组合模型
empirical mode decomposition
support vector machine
silicon content in hot metal
combined model