期刊文献+

Existence and Regularity of Solution to a Thermally Coupled Nonstationary System

Existence and Regularity of Solution to a Thermally Coupled Nonstationary System
下载PDF
导出
摘要 In this paper, a coupled elliptic-parabolic system modeling a class of engineering problems with thermal effect is studied. Existence of a weak solution is first established through a result of Meyers' theorem and Schauder fixed point theorem, where the coupled functions σ(s),k(s) are assumed to be bounded in the C(IR×(0, T)). If σ(s),k(s) are Lipschitz continuous we prove that solution is unique under some restriction on integrability of solution. The regularity of the solution in dimension n ≤ 2 is then analyzed under the assumptions on σ(s) ∈w^1,∞(Ω×(0, T)) and the boundedness of σ'(s) and σ″(s).
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2008年第4期512-524,共13页 数学季刊(英文版)
基金 Foundation item: Supported by the National Natural Science Foundation of China(40537034)
关键词 elliptic-parabolic system EXISTENCE UNIQUENESS REGULARITY 非稳态热耦合方程组解 存在性 正则性 解题方法
  • 相关文献

参考文献12

  • 1ANTONTSEV S N, CHIPOT M. The thermistor Problem: existence, smoothness. uniqueness, blow up[J]. SIAM J Math Anal. 1992, 25: 1128-1156.
  • 2管平.EXISTENCE, BOUNDEDNESS AND UNIQUENESS OF WEAK SOLUTION FOR THE THERMISTOR PROBLEM WITH MIXED BOUNDARV CONDITIONS[J].Acta Mathematica Scientia,1998,18(3):326-332. 被引量:3
  • 3BARANGER J, MIKELIC A. Stationary solutions to a quasi-newtonian flow with viscous heationg[J]. Mathematical Models and Methods in Applied Science, 1995, 5(6): 725-738
  • 4CIMATTI G. A bound for the temperature in the thermlstor's problem[J]. IMA J Appl Math, 1988, 40: 15-22.
  • 5HOWISON H D, RODRIGUES J F, SHILLOR M. Stationary solutions to the thermistor problem[J]. Jour of Math Anal and Appl, 1993, 174: 573-588.
  • 6ZHU Jiang, LOULA A F D. Mixed finite element analysis of a thermally nonlinear coupled problem[J]. Numer Methods Partial Differential Eq, 2006, 22: 180-196.
  • 7ZHU Jiang, LOULA A F D, KARAM J, et al. Finite element analysis of a coupled thermally dependent viscosity flow problem[J]. Comput Appl Math, 2007~ 26: 45-66.
  • 8CHARLES M Elliott, STIG Larsson. A finite element model for the time-dependent Joule heating problem[J]. Mathematics of Computation, 1995, 64(212): 1433-1453.
  • 9LOULA A F D, ZHU Jiang. Finite element analysis of a coupled nonlinear system[J]. Comput Appl Math, 2001~ 20: 321-339.
  • 10WANG Yuan-ming. Nonlinear Partial Differential Equations[M]. Nanjing: Southeast University Press, 1992.

二级参考文献12

  • 1Giovanni Cimatti.Existence of weak solutions for the nonstationary problem of the Joule heating of a conductor[J]. Annali di Matematica Pura ed Applicata . 1992 (1)
  • 2Konrad Gr?ger.AW 1,p -estimate for solutions to mixed boundary value problems for second order elliptic differential equations[J]. Mathematische Annalen . 1989 (4)
  • 3M. K. V. Murthy,G. Stampacchia.A variational inequality with mixed boundary conditions[J]. Israel Journal of Mathematics . 1972 (1-2)
  • 4Chipot M,Cimatti G.A unqueness result for the thermistor problem. European Journal of Applied Mathematics . 1991
  • 5Groger K.W1,p-estimates of solutions to evolution equations corresponding to nonsmooth second orderelliptic differential operators.Nonlilnear. Anales . 1992
  • 6Antontsev S N,Chipot M.The thermistor problem: existence, smoothness, uniqueness.blowup, SIAM J. Math. Anal . 1994
  • 7Yuan G.Existence of & weak solution for the phase change problem with Joule’s heating. J. PartialDifferential Equations . 1994
  • 8Tanabe H.Equation of Evolution. . 1979
  • 9Troianiello G M.Elliptic Differential Equations and Obstacle Problems. . 1987
  • 10Yuan G,Liu Z.Existence and uniqueness of the Cα solution for the thermistor problem with mixedboundary value. SIAM Journal on Mathematical Analysis . 1994

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部