期刊文献+

快速路入口匝道的的非参数自适应迭代学习控制 被引量:9

Non-parameter adaptive iterative learning control for the freeway traffic ramp metering
下载PDF
导出
摘要 基于快速路交通系统重复性和周期性的特征,引入"拟伪偏导数"概念,给出了宏观交通流模型沿迭代轴的非参数动态线性化形式.进一步,提出了快速路入口匝道的非参数自适应迭代学习控制(NP-AILC)方案.该控制方法本质上是无模型的,并且学习增益可迭代调节.收敛性分析表明当系统初始状态随迭代次数随机变化时,该方法可实现几乎完全跟踪性能.仿真结果进一步验证了方法的有效性. Based on the repeatability and periodicity of the freeway traffic system, a non-parameter dynamic linearization of the macroscopic traffic flow model is developed by introducing the concept of "Mimic Pseudo Partial Derivative" . And then, a new non-parameter adaptive iterative learning control (NP-AILC) is presented for the freeway traffic ramp metering. This control approach is model-free in nature, and its learning gain can be adjusted iteratively. Convergence analysis shows that this approach can achieve an almost perfect tracking performance when the initial states are randomly varying iteratively. Simulation results further illustrate the validity of the presented method.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2008年第6期1011-1015,共5页 Control Theory & Applications
基金 国家自然科学基金资助项目(60474038) 青岛科技大学博士启动基金资助项目(0022324).
关键词 入口匝道调节 非参数动态线性化 非参数自适应控制 迭代学习控制 随机初始条件 ramp metering non-parameter dynamic linearization non-parameter adaptive control iterative learning control random initial condition
  • 相关文献

参考文献6

  • 1ISAKEN L, PAYNE H J. Suboptimal control of linear systems by augmentation with application to freeway traffic regulation[J]. IEEE Transactions on Automatic Control, 1973, 18(3): 210- 219.
  • 2GOLSTEIN N, KUMAR K S E A decentralized control strategy for freeway regulation[J]. Transportation Research B, 1982, 16B(4): 279 - 290.
  • 3SUN M, WANG D. Initial shift issues on discrete-time iterative learning control with system relative degree[J]. IEEE Transactions on Automatic Control, 2003, 48(1): 144 - 148.
  • 4CHI Rong-Hu,HOU Zhong-Sheng.Dual-stage Optimal Iterative Learning Control for Nonlinear Non-affine Discrete-time Systems[J].自动化学报,2007,33(10):1061-1065. 被引量:20
  • 5HOU Z, XU J X. Freeway traffic density control using iterative learning control approach[C]//Proceedings of the IEEE 6th International Conference on Intelligent Transportation Systems. Shanghai: [s.n.], 2003, 2:1081 - 1086.
  • 6PAPAGEORGIOU M, BLOSSEVILLE J M, HADJ-SALEM H. Modeling and real time control on traffic flow on the southern part of Bpulevard Peripherique in Paris. Part Ⅰ: Modeling; Part Ⅱ: Coordinated on-ramp metering[J]. Transportation Research, 1990, A24(9): 345 - 370.

二级参考文献13

  • 1Arimoto S,Kawamura S,Miyazaki F.Bettering operation of robots by learning.Journal of Robotic Systems,1984,1(2):123-140
  • 2Xu J X,Qu Z H.Robust iterative learning control for a class of nonlinear systems.Automatica,1998,34(8):983-988
  • 3Wang D W.Convergence and robustness of discrete time nonlinear systems with iterative learning control.Automatica,1998,34(11):1445-1448
  • 4Chen H F,Fang H T.Output tracking for nonlinear stochastic systems by iterative learning control.IEEE Transactions on Automatic Control,2003,49(4):583-588
  • 5Chien C J,Yao C Y.Iterative learning of model reference adaptive controller for uncertain nonlinear systems with only output measurement.Automatica,2004,40(5):855-864
  • 6Xu J X,Tan Y.Linear and Nonlinear Iterative Learning Control.Berlin:Springer-Verlag,2003
  • 7Geng Z,Carrol R,Jamshidi M,Kisner R.A learning control scheme with gain estimator.In:Proceedings of IEEE International Symposium on Intelligent Control.IEEE,1991.365-370
  • 8French M,Munde G,Rogers E.Recent developments in adaptive iterative learning control.In:Proceedings of the 38th Conference on Decision and Control.IEEE,1999.264-269
  • 9Choi J Y,Lee J S.Adaptive learning control of uncertain robotic systems.IEE Proceedings D Control Theory & Applications,2000,147(2):217-223
  • 10Hou Z S,Huang W H.The model-free learning adaptive control of a class of SISO nonlinear systems.In:Proceedings of the American Control Conference.Albuquerque,New Mexico:American Automatic Control Council,1997.343-344

共引文献19

同被引文献94

  • 1梁新荣,刘智勇,毛宗源.高速公路匝道非线性反馈控制器的设计与仿真[J].计算机工程与应用,2005,41(20):111-113. 被引量:6
  • 2席裕庚,王凡.非线性系统预测控制的多模型方法[J].自动化学报,1996,22(4):456-461. 被引量:60
  • 3Apostolos Kotsialos,Markos Papagrorgiou,Morgan Mangeas,Habib Haj-Salem.Coordinated and integrated control of motorway networks via non-linear optimal control[J].TRANSPORTATION RESEARCH(s0360-859X),2002,10(1):65-84.
  • 4T.Bellemans,B.De Schutter and B.De Moor.Anticipative model predictive control for ramp metering in freeway networks.American Control Conference[G].Denver,Colorado,2003:4077-4082.
  • 5ARIMOTO S, KAWAMURA S, MIYAZAKI E Bettering operation of robotics [J]. Journal of Robotic System, 1984, 1(2): 123- 140.
  • 6XU J X. Analysis of iterative learning control for a class of nonlinear discrete-time system [J]. Automatica, 1997, 33(10): 1905 - 1907.
  • 7XU J X. Linear and Nonlinear Iterative Learning Control [M]. Berlin: Springer Verlag, 2003.
  • 8AHN H S, CHEN Y Q, MOORE K L. Iterative learning control: brief survey and catagorization [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2007, 37(6): 1099 - 1121.
  • 9CHI R H, HOU Z S, XU J X. Adaptive ILC for a class of discrete- time systems with iteration-varying trajectory and random initial con- dition [J]. Automatica, 2008, 44(8): 2207 - 2213.
  • 10SUN M X, WANG D W. Initial shift issues on discrete-time iterative learning control with system relative degree [J]. IEEE Transactions on Automatic Control, 2003, 48(1): 144 - 148.

引证文献9

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部