期刊文献+

基于支持向量机的非线性内模解耦控制 被引量:6

Nonlinear internal-model control based on support vector machine
下载PDF
导出
摘要 针对非线性内模控制在应用于多变量系统时逆模型难以建立的问题,提出了支持向量机α阶逆系统的内模解耦控制方法.该方法利用支持向量机辨识非线性系统的逆模型,并将其串连在原系统之前,运用逆系统方法的思想,将一个多变量、非线性、强耦合的复杂系统通过反馈线性化解耦成多个相互独立的单输入单输出的伪线性复合子系统.对求得的伪线性系统采用内模控制方法进行控制.仿真试验表明该方法不需要系统精确的数学模型,较一般的逆系统方法鲁棒稳定性好,设计简单,跟踪精度高,是解决多变量非线性系统控制的一种可行的理论方法. To deal with the difficulties of inverse modeling in the nonlinear multi-variable internal-model control, we propose a new internal-model control method based on the support vector machine -order inverse system method. This method uses support vector machine to identify the inverse model of the system and then cascades the-order inverse model with the original system to decouple the multi-variable, nonlinear and strong coupling system into several composite pseudo-linear subsystems. The internal-model control method is applied to the pseudo-linear subsystems. Simulation results show that the combined method does not require an accurate mathematical model and has the characteristics of better robustness stability, easier application and higher tracking accuracy. It is really one of the available methods for designing multi-variable nonlinear systems.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2008年第6期1067-1071,1076,共6页 Control Theory & Applications
基金 浙江省自然科学基金资助项目(Y1080950).
关键词 支持向量机 非线性内模控制 逆系统方法 解耦 鲁棒稳定性 support vector machine nonlinear internal model control inverse system method decouple robust stability
  • 相关文献

参考文献14

  • 1DAI X Z, HE D, ZHANG X, et al. MIMO system invertible and decoupling control strategies based on ANN αth-order inversion[J]. IEE Proceedings: Control Theory and Applications, 2001, 148(2): 60 - 64.
  • 2HENSON M A, SEBORG D E. An internal model control strategy for nonlinear systems[J]. America Institute of Chemical Engineering Journal, 1991, 37(7): 1065 - 1081.
  • 3ALVAREZ J, ZAZUETA S. An internal model controller for a class of single-input single-output nonlinear systems: Stability and robustness[J]. Dynamics and Control, 1998, 8(2): 123 - 124.
  • 4GARCIA C E, MORARI M. Internal model control-2: Design procedure for multivariable system[J]. Industrial Engineering Chemistry Process Design and Development, 1985a, 24(2): 472 - 484.
  • 5GARCIA C E, MORARI M. Internal model control 3: Multivariable control law computationand tuning guidelines[J]. Industrial Engineering Chemistry Process Design and Development, 1985b, 24(2): 484 - 494.
  • 6张智焕,王树青.非线性系统的多内模控制[J].浙江大学学报(工学版),2003,37(1):56-59. 被引量:17
  • 7VAPNIK V N. Statistical Learning Theory[M]. New York: John Wiley Press, 1998.
  • 8SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293 - 300.
  • 9SUYKENS J A K, LULAS L, VANDEWALLE J. Sparse approximation using least squares support vector machine[C]//IEEE International Symposium on Circuits and Systems. Switzerland: Geneva, 2000, 2:757 - 760.
  • 10SUYKENS J A K. Support vector machines: A nonlinear modeling and control perspective[J]. European Journal of Control, 2001, 7(2/3): 311 - 327.

二级参考文献20

  • 1[1]XI Y G, WANG F, WU G H. Nonlinear multi-model predictive control[A]. Proc 13th Triennial World Congress of IFAC[C]. London:Elsevier Scionce Ltd,1996.485-490.
  • 2[2]LIU G Q, SUN Y X, WANG W H. Multi-model predictive control of uncertain linear system[A]. Proc 14th Triennial World Congress of IFAC[C]. London:Elsevier Scionce Ltd,1999.189-194.
  • 3[3]CHOW C M, KUZNETSOV A G, CLARKE D W. Successive one-step-ahead predictions in multiple model predictive control[J].International Journal of Systems Science, 1998,29(9): 971-979.
  • 4[4]FOSS B A, CONG S B. Nonlinear MPC based on multi-model for distillation columns[A]. Proc 14th Triennial World Congress of IFAC[C]. London:Elsevier Scionce Ltd,1999.337-342.
  • 5[5]CHIU Min-sen, CUI Shan, WANG Qing-guo. Internal model control design for transition control [J]. AIChE Journal, 2000,46(2): 309-320.
  • 6张学工.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 7Bequette B W.Nonlinear control of chemical process:a review[J].Industry&Engineering Chemistry Research,1991,30(4):1391~1413.
  • 8Evelio H,Yaman A.Control of nonlinear systems using polynomial ARMA models[J].AIChE Journal,1993,39(3):446~460.
  • 9Maner R B, Doyle Ⅲ F J. Polymerization reactor control using autoregressive-plus volterra-based MPC [ J]. AIChE Joumal, 1997,43(7) :1763 - 1784.
  • 10Cortes C, Vapnik V. Support vector machine [J]. Machine leaming, 1995,20(3) :273 - 297.

共引文献53

同被引文献49

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部