期刊文献+

多重核学习非线性时间序列故障预报 被引量:5

Nonlinear time series fault prediction by multiple kernel-learning
下载PDF
导出
摘要 针对非线性时间序列故障预报问题,提出了多重核学习故障预报方法.利用多重核学习可以减少支持向量的个数,提高预测性能.而且在多重核学习定义的混合核空间中运用减聚类能够提取正常原型.最后,将本文提出的方法应用于连续搅拌釜式反应器的故障预报,仿真结果表明该方法能够提高故障预报的准确性与实时性. A novel fault prediction method based on multiple kernel-learning is proposed for fault prediction in nonlinear time series. In the support-vector regression, the multiple kernel-learning will reduce the number of support vectors, and improve the performance of the prediction model. Furthermore, the normal prototypes could be extracted by conducting subtractive clustering on the mixed kernel space defined by multiple kernel-learning. The proposed method is applied to a continuous stirred-tank reactor(CSTR) for fault prediction. Simulation results indicate that this method predicts faults quickly and accurately.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2008年第6期1142-1144,共3页 Control Theory & Applications
基金 国家自然科学基金重点资助项目(60234010) 国家航空科学基金资助项目(05E52031).
关键词 故障预报 多重核学习 支持向量回归 减聚类 fault prediction multiple kernel-learning support vector regression subtractive clustering
  • 相关文献

参考文献10

  • 1TSE P W, ATHERTON D E Prediction of machine deterioration using vibration based fault trends and recurrent neural networks[J]. Journal of Vibration & Acoustics, 1999, 121(7): 355- 362.
  • 2VAPNIK V N. The Nature of Statistical Learning Theory[M]. Berlin: Springer, 1995.
  • 3张军峰,胡寿松.基于聚类和支持向量机的非线性时间序列故障预报[J].控制理论与应用,2007,24(1):64-68. 被引量:22
  • 4LANCKRIET G, BIE T D. A statistical framework for genomic data fusion[J]. Bioinformatics, 2004, 20(16): 2626 -2635.
  • 5LANCKRIET G, CRISTIANINI N. Learning the kernel matrix with semidefinite programming[J]. Journal of Machine Learning Research, 2004, 5:27 - 72.
  • 6SONNENBURG S, RATSCH G. Large scale multiple kernel learing[J]. Journal of Machine Learning Research, 2006, 7: 1- 18.
  • 7ANDERSON E D, ANDERSON A D. The MOSEK interior point optimizer for linear programming[C]//High Performance Optimization. Berlin: Springer, 2000, 33: 197- 232.
  • 8BOYD S, VANDERBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004.
  • 9KIM D W, LEE K Y. Evaluation of the performance of clustering algorithms in kernel-induced feature space[J]. Pattern Recognition, 2005, 38(4): 607 - 611.
  • 10KIM D W, LEE K Y. A kernel-based subtractive clustering method[J]. Pattern Recognition Letters, 2005, 26(7): 879 - 891.

二级参考文献9

  • 1HO S L,XIE M.The use of ARIMA models for reliability forecasting and analysis[J].Computer & Industrial Engineering,1998,35(1-2):213 -216.
  • 2TSE P W,ATHERTON D P.Prediction of machine deterioration using vibration based fault trends and recurrent neural networks[J].J of Vibration & Acoustics,1999,121(7):355-362.
  • 3JAIN A K,MURTY M N.Data clustering:areview[J].ACM Computing Surveys,1999,31(3):264-323.
  • 4RICHARD O D,PETER E H,DAVID G S.Pattern Classification[M].Second Edition.New York:John Wiley & Sons,2002.
  • 5VAPNIK V N.The Nature of Statistical Learning Theory[M].New York:Springer,1995.
  • 6THISSENA U,BRAKELA R,et al.Using support vector machines for time series prediction[J].Chemometrics & Intelligent Laboratory Systems,2003,6(9):35 -49
  • 7VAPNIK V N.Statistical Learning Theory[M].New York:Wiley,1998.
  • 8JAMES T K,IVOR W T.Linear dependency between e and the input noise in e-support vector regression[J].IEEE Trans on Neural Networks,2003,14(5):544-553.
  • 9MATTERA D,HAYKIN S.Support vector machines for dynamic reconstruction of a chaotic system[C]//Advances in Kernel Methods-Support Vector Learning.Cambridge:MIT Press,1999:243-254.

共引文献21

同被引文献52

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部