期刊文献+

零程过程的临界密度的数值模拟

The Numeral Simulation of the Critical Density in Zero-Range Process Model
下载PDF
导出
摘要 零程过程(Zero-Range Process以下简称ZRP)的临界密度是我们所关注的,在随机动力学规则下已经能解析得出,但在其他的动力学规则下还不能解析求解。我们引入了一个新的参量局域化系数来度量系统粒子分布的局域性,数值模拟了在随机动力学规则下的局域化系数随粒子密度的变化关系,得到临界密度,结果与解析得到的系统临界密度相符。这样我们可以通过数值来得出其他动力学规则下的临界密度。 The critical density of Zero - Range Process (ZRP) has gained much attention. It can be solved with random updating rule, but when it comes to other updating rule, there is no way to be solved. A new parameter is introduced here to measure the locality of particle distribution. The relationship between local coefficient and particle density is simulated with random updating rule and critical density is measured, which is in conformity with the critical density of the system. In this way, we can calculate the critical density with other updating rule.
出处 《中州大学学报》 2008年第6期122-125,共4页 Journal of Zhongzhou University
关键词 ZRP模型 凝聚 临界密度 并行动力学规则 随机动力学规则 局域化系数 Zero- Range Process Model condensation critical density parallel updating rule random updating rule local coefficient
  • 相关文献

参考文献11

  • 1Spitzer F, Interaction of Markov processes [ D ]. adv. Math. 5 246(1970).
  • 2Evans M R. Phase transitions in one - dimensional nonequilibrium systems [ J]. Braz. J. Phys. 30,42 (2000).
  • 3Evans M R, Hanney T. Nonequilibrium statistical mechanics of the zero - range process and related models [ J ]. J. Phys. A:Math. Gen. 38 R195(2005).
  • 4Schmittmann B, Zia R P K. Phase Transitions and Critical Phenomena [ J ]. vol 17 ( London: Academic Press) ( 1995 ).
  • 5Schutz G M. Critical phenomena and universal dynamics in onedimensional driven diffusive systems with two species of particles[J]. Phys. A: Math. Gen. 36 R339 (2003).
  • 6O' Loan O J, Evans M R and Cates M, E, Jamming tranaition in a homogeneous one - dimensional system: The bus mute model,Phys[ J]. Rev. E 58,1404(1998).
  • 7Bialas P, Burda Z, Johnston D. Condensation in the Backgammon model [ J]. Nuclear Physics B ,493 505 ( 1997 ).
  • 8Kunwar A, John A, Nishinari K, etal. Collective traffic - like movement of ants on a trail: dynamical phases and phase transitions [ J ]. J. Phys. Soc. Jpn. 72979 (2004).
  • 9Levine E, Mukamel D, Schutz G M. Zero - range process with open boundaries [ J ]. J. Stat. Phys. 120 759 (2005).
  • 10Andrews G E, Askey R, Roy P, etal. Special Functions, Encyclopedia of Mathematics and its Spplications [ D ]. Vol. 71 ( Cambridge University Press, 1999).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部