期刊文献+

数据场理论在互联网络拓扑建模中的应用 被引量:1

Application of data field in network topology modeling
下载PDF
导出
摘要 通过对数据场理论的研究以及互联网络拓扑研究现状的分析,将势函数引入到拓扑建模当中,尝试利用节点拓扑势作为依据衡量节点在网络中的重要性进行节点分类,并给出了一个体现互联网络层次性特征的拓扑生成算法。通过实验,证明了将数据场理论应用到拓扑建模研究中具有可行性。 Through the research of the field theory and the exposition of internet's topology modeling current situation, leading the potential function into topology modeling, we tried to weigh the importance of the nodes and classify the nodes by node topology potential. This paper gave a topology producing algorithm that can reflect the internet hierarchy characteristic. Through the experiment, we have proved that it is feasible to apply the data field theory to topological modeling.
作者 苏瑞 王勇
出处 《桂林电子科技大学学报》 2008年第6期516-518,共3页 Journal of Guilin University of Electronic Technology
基金 广西研究生教育创新计划项目(2008105950812M427)
关键词 数据场 拓扑建模 data field potential topology modeling
  • 相关文献

参考文献9

二级参考文献32

  • 1李德毅.发现状态空间理论[J].小型微型计算机系统,1994,15(11):1-6. 被引量:25
  • 2姜誉,方滨兴,胡铭曾,何仁清.大型ISP网络拓扑多点测量及其特征分析实例[J].软件学报,2005,16(5):846-856. 被引量:38
  • 3Shi Zhou, Raul J Mondragon. The Rich-Club Phenomenon in the Internet Topology[J].IEEE Communications Letters, 2004,8(3):180-182.
  • 4Anukool Lakhina, John W Byers, Mark Crovella, et al. Sampling Biases in IP Topology Measurements[A].IEEE INFOCOM 2003[C].2003.
  • 5K Calvert, M Doar, E Zegura. Modeling Internet Topology[J].IEEE Trans on Communications,1997,35(6):160-163.
  • 6E Zegura, K Calvert, MJDonahoo. A Quantitative Comparison of Graph-Based Models for Internet Topology[J].IEEE/ACM Trans on Networking, 1997,5(6):770-703.
  • 7M Faloutsos, P Faloutsos, C Faloutsos. On Power-Law Relationships of the Internet Topology[A].Proc ACM/SIGCOMM, [C].1999.251-262.
  • 8陆汝钤.世纪之交的知识工程与知识科学[M].北京:清华大学出版社,2001..
  • 9吕辉军.基于数据场的人脸识别研究 [Z].南京:解放军理工大学,2002..
  • 10鲁道夫·阿斯海姆 腾守尧 译.视觉思维[M].北京:光明日报出版社,1986..

共引文献31

同被引文献30

  • 1淦文燕,李德毅,王建民.一种基于数据场的层次聚类方法[J].电子学报,2006,34(2):258-262. 被引量:83
  • 2Watts D J, Strogatz S H. Collective of Dynamic of 'Small Word Network [J]. Nature,1998,393(6684) :440-442.
  • 3Wilkinson D M,Huberman B A. A Method for Finding Com- munities of Related Genes[C]//Proc of the National Acade- my of Science, 2004 : 5241-5248.
  • 4Guimera R, Amaral L A N. Functional Cartography of Com- plex Metabolic Networks[J]. Nature, 2005,433 : 895-900.
  • 5White S,Smyth P. A Spectral Clustering Approach to Finding Communities in Graph[C]//Proc of SIAM Data Mining, 2005:274-285.
  • 6Palla G,Derenyi I, Farkas I, et al. Uncovering the Overlap- ping Community Structures of Complex Networks in Nature and Society[J]. Nature, 2005,433 : 814-818.
  • 7Girvan M, Newman M E J. Community Structure in Social and Biological Networks[J]. Proceedings of the National A- cademy of Science,2002,9(12);7821-7826.
  • 8Tyler J R, Wilkinson D M, Huberman B A. Email as Spec- troscopy: Automated Discovery of Community Structure within Organizations[C]//Proc of the 1st International Con- ference on Communities and Technologies, 2003 :81-96.
  • 9Radicchi F, Castellano C, Cecconi F, et al. Defining and Identi- fying Communities in Networks[J]. Proceedings of the Na- tional Academy of Science, 2004,101(9) : 2658-2663.
  • 10Moussiades L, Vakali A. Mining the Community Structure of a Web Site[C]//Proc of the 4th Balkan Conference in Infor- matics, 2009 : 239-244.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部