期刊文献+

均值-平均绝对偏差投资组合模型与优化 被引量:2

下载PDF
导出
摘要 文章提出了具有上下界限制的均值-平均绝对偏差投资组合模型,并运用线性规划的旋转算法进行求解。该算法可以减少约束条件的个数,提高计算效率。文章还通过算例验证了该算法的有效性。
作者 张鹏
出处 《统计与决策》 CSSCI 北大核心 2009年第1期14-15,共2页 Statistics & Decision
基金 国家自然科学基金资助项目(70471077) 教育部人文社会科学研究基金资助项目(08JC630062) 湖北省教育厅人文社科研究资助项目(2008Q115) 武汉科技大学校基金资助项目(2008XY33)
  • 相关文献

参考文献5

二级参考文献25

  • 1张鹏,张忠桢,岳超源.基于效用最大化的投资组合旋转算法研究[J].财经研究,2005,31(12):116-125. 被引量:15
  • 2张鹏,张忠桢,岳超源.限制性卖空的均值-半绝对偏差投资组合模型及其旋转算法研究[J].中国管理科学,2006,14(2):7-11. 被引量:41
  • 3Markowitz H. Portfolio selection[J]. The Journal of Finance, 1952,7(1): 77-91.
  • 4Markowitz H. Portfolio selection: Efficient diversification of investments [M]. Second ed. in 1991, Basil Blackwall, New York, 1959.
  • 5Dexter. A S, Yu, T N W, Ziemba W T. Portfolio selection in lognormal market whenthe investor has a power utility function. Computational results [M]. In M. A. H. ,Dempster(ed), stochastic programming, Academic Press, New York and London,1980.
  • 6Pulley L M. A general mean-variance approximation to expected utility for short hold- ing periods [J]. Journal of Financial and Quantitative Analysis, 1981,16: 361-373.
  • 7Pulley L M. Mean-variance approximation to logarithmic utility [J]. Operations Research, 1983,31(4):685-696.
  • 8Baron D P. On the utility theoretical foundations of mean-variance analysis [J]. The Journal of Finance, 1977,32:1683-1697.
  • 9Steinbach M C. Markowitz revisited.. Mean-variance models in financial portfolio analysis [J]. Siam Review, 2001,43:31-85.
  • 10Joseph Twagilimana. Mean-variance model in portfolio analysis[M]. M. A thesis, University of Louisville, 2002.

共引文献59

同被引文献21

  • 1MARKOWITZ H. Portfolio Selection [ J ]. The journal of Finance, 1952,7( 1 ) :77-91.
  • 2KONNO H, YAMAZAKI H. Mean-absolute deviation portfolio optimization model and its apphcations to Tokyo stock market [ J ]. Management Science, 1991, 37 ( 5 ) : 519-531.
  • 3TETLOW R, MUEHLEN P. Robust monetary policy with misspecified models : does uncertainty always call for atten- uated policy? [ J ]. Journal Economical Dynamics Control, 2001,25(7) :911-949.
  • 4COSTAOLV , PAIVAAC . Robust portfolio selection using linear-matrix inequalities [ J ]. Journal of Economic &Control, 2002,26 (6) : 889-909.
  • 5DONG ZHENG,XI-KUN LIANG. Optimization of tracking error for robust portfolio of risk assets with transaction cost [ J ]. i Business, 2013, (5) 23-26.
  • 6SOYER A L. Convex programming with set-inclusive con- straints and applications to inexact linear programming [ J ]. Operations Research, 1973,21 (5) : 1154-1157.
  • 7BERSIMAS D, SIM M . The price of robustness [ J ]. Op- erations Research,2004,52( 1 ) :55-53.
  • 8YONGMA MOON,TAO YAO. A robust mean absolute de- viation model for portfolio optimization [ J ]. Computers & Operations Research ,2011,38(12) : 1251-1258.
  • 9Markowitz H. Portfolio selection [J]. The journal of finance, 1952, 7 (1) :77-91.
  • 10Konno H, Yamazaki H. Mean-absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market [J].Management Science, 1991,37(5) :519-531.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部