期刊文献+

光谱移位对成像光谱仪辐射测量的影响 被引量:6

Effects of spectral position offset on radiance measurement of imaging spectrometer
下载PDF
导出
摘要 棱镜色散成像光谱仪由于光谱弯曲或者装调等原因会使探测器上产生一定的光谱移位,为了研究光谱移位对系统采集到的光谱辐射能量的影响,首先给出探测器像元采集辐射能量的表达式。再结合棱镜色散成像光谱仪在短波红外(1.0~2.5μm)谱段的光谱采样特性,计算当光谱偏离量为0.01d、0.1d和0.5d(d为探测器像元尺寸)时,系统采集到的辐射能量与没有光谱偏离情况下系统采集到的辐射能量的归一化差值。结果表明:探测器上的光谱偏离导致系统辐射测量精度发生变化,与没有光谱偏离的情况相比,系统采集到的光谱辐射能量在大气吸收带的边缘出现了明显的偏差,且差值随光谱偏离量的增大而增大。当光谱分辨率提高时,一些较弱的吸收峰附近也会出现明显的辐射能量偏差。光谱分辨率为10nm,对于0.1d的光谱偏离量,归一化的辐射能量偏差PV值达到0.011;对于0.5d的光谱偏离量,归一化的光谱偏离量PV值达到0.04。相对能量偏差达到50%以上。实际应用中必须校正由于光谱移位给辐射能量采集带来的偏差,以满足成像光谱仪光谱辐射测量一致性的要求。 Spectral curvature brings the position offset of spectral line on focal plane array detector, which affects the acquired radiant signal by imaging spectrometer with prism dispersion.The expression of acquired signal by detector pixel was given,the normalized error of acquired signal was calculated, and the dispersive spectrumsampling characteristics of imaging spectrometer was combined to calculate the normalized error of acquired signal between with 0.01d, 0.1d, 0. 05d offset (d is pixel dimension),and without spectral curvature offset in SWIR (1.0-2.5 μm). The results indicate that spectrum offset of detector results in changed measurement accuracy, compared with no spectral curvature,the scene radiant signal acquired by imaging spectrometer with spectral curvature exhibits distinct error at the edges of atmospherical absorption bands.And the normalized signal errors increase along with the spectral offset. When spectral resolution increases,there is distinct signal errors near some weak atmospherical absorption peaks.When the spectral resolution was 10 nm, for O.ld spectral offset, the PV of the normalized error of the measured signal was 0.011; for the 0.5d spectral offset, the PV of the normalized error of the measured signal was 0.04, the relative error of the measured signal could be above 50%. In the actual application, the radiance error induced by spectral position offset must be adjusted to satisfy the requirement of the consistency of spectral radiance measured by imaging spectrometer.
作者 冯玉涛 向阳
出处 《红外与激光工程》 EI CSCD 北大核心 2008年第6期1083-1086,共4页 Infrared and Laser Engineering
基金 国家自然科学基金重点项目(60538020) 中国科学院创新项目
关键词 光谱移位 短波红外光谱采集 棱镜色散 成像光谱仪 Spectral position offset SWIR spectral acquisition Prism dispersion Imaging spectrometer
  • 相关文献

参考文献2

二级参考文献23

  • 1吴航行,华建文,王模昌.新型红外空间遥感用傅里叶变换光谱仪[J].红外与激光工程,2004,33(4):397-400. 被引量:13
  • 2杨新军,王肇圻,母国光.折/衍混合多光谱红外成像光谱仪离轴系统设计[J].红外与激光工程,2005,34(4):379-383. 被引量:19
  • 3[1]Chamberlain J E. The principles of interferometric spectroscopy[M]. New York: John Wiley & Sons, 1979.
  • 4[2]Sean F Johnston. Fourier transform infrared-a constantly evolving technology [ M]. Chichester: Ellis Horwood limited,1991.
  • 5[3]Hirokazu Kobayashi, Akiro Shimota, Kayoko Kondo, et al. Development and evaluation of the interferometric monitor for greenhouse gases: a high-throughput Fourier-transform infrared radiometer for nadir Earth observation[J]. Appl Opt, 1999,38(33) :6801-6807.
  • 6[4]Makoto Suzuki, Haruhisa Shimoda, Hirokazu Kobayashi, et al.Mission concept of atmospheric radiation spectrometer (ATRAS): a follo-on instrument of ADEOS/IMG[A]. SPIE[C].2000,4131. 297-304.
  • 7[5]Gessner R,Smith D J, Mosner P, et al. MIPAS on board ENVISAT: preparations for In-flight commissioning and calibration[A]. SPIE[C]. 2001,4540.71-81.
  • 8[6]Javelle, Pascale, Cayla,et al. Infrared atmospheric sounding interferometer instrument overview[A].SPIE[C]. 1994,2209.14-23.
  • 9[7]Jacques G Giroux, Marc-Andre Soucy, Francois Chateauneuf,et al. Design of the atmospheric chemistry experiment instrument[A]. SPIE[C]. 2000,4131. 334-347.
  • 10[8]Akihiko Kuze, Hideaki Nakajima, Jun Tanii, et al. Conceptual design of solar occultation FTS for inclined-orbit satelite(SOFIS) on GCOM-A1[A]. SPIE[C]. 2000,4131. 305-314.

共引文献108

同被引文献69

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部