期刊文献+

电荷修饰对碳纳米管水分子填充过程的影响 被引量:2

原文传递
导出
摘要 利用分子动力学模拟和伞形抽样技术,研究了微流体化水分子在碳纳米管中的输运过程.模拟结果显示,碳纳米管管端的正电荷修饰可以降低其内部水柱的生长速度,而负电荷修饰则加快水柱的生长.在不同的电荷修饰条件下,通过统计碳纳米管内水柱的生长过程可以得到自由能曲线,利用这些自由能曲线可以合理地解释碳纳米管内水柱生长的动力学过程.
出处 《中国科学(B辑)》 CSCD 北大核心 2008年第12期1063-1069,共7页 Science in China(Series B)
基金 国家自然科学基金(批准号:10425420,20773145) 国家重点基础研究发展计划(编号:2006CB806200,2006CB932100)资助项目
  • 相关文献

参考文献38

  • 1Zhu F, Schulten K. Water and proton conduction through carbon nanotubes as models for biological channels. Biophys J, 2003, 85: 236-244.
  • 2Kalra A, Garde S, Hummer G. Osmotic water transport through carbon nanotube membranes. Proc Natl Acad Sci, 2003, 100: 10175-10180.
  • 3Corry B. Designing carbon nanotube membranes for efficient water desalination. J Phys Chem B, 2008, 112:1427-1434.
  • 4Preston G M, Carroll T P, Guggino W B, Agre P. Appearance of water channels in xenopus oocytes expressing red cell CHIP28 protein. Science, 1992, 256:385-387.
  • 5O'Connell M J, Bachilo S M, Huffman C B, Moore V C, Strano M S, Haroz E H, Rialon K L, Boul P J, Noon W H, Kittrell C, MaJ, Hauge R H, Weisman R B, Smalley R E. Band gap fluorescence from individual single-walled carbon nanotubes. Science, 2002, 297: 593-596.
  • 6Miller S A, Young V Y, Martin C R. Electroosmotic flow in template-prepared carbon nanotube membranes. J Am Chem Soc, 2001, 123:12335-12342.
  • 7Huanga B, Xia Y, Zhao M, Li F, Liu X, Ji Y, Song C. Distribution patterns and controllable transport of water inside and outside charged single-walled carbon nanotubes. J Chem Phys, 2005, 122:084708.
  • 8Zimmerli U, Gonnet P G, Walther J H, Koumoutsakos P. Curvature induced L-defects in water conduction in carbon nanombes. Nano Lett, 2005, 5:1017-1022.
  • 9Truskett T M, Debenedetti P G, Torquato S. Thermodynamic implications of confinement for a waterlike fluid. J Chem Phys, 2001, 114:2401-2418.
  • 10Brovchenko I, AlfonsGeiger, Oleinikova A. Water in nanopores: Ⅱ. The liquid-vapour phase transition near hydrophobic surfaces. J Phys: Condens Matter, 2004, 16:S5345-S5370.

同被引文献29

  • 1Brandbyge M, Mozos J L, Ordej6n P, et al. Density-functional method for nonequilibrium electron transport. Phys Rev B, 2002, 65: 165401.
  • 2Troullier N, Martins J. Efficient pseudopotentials for plane-wave calculations. Phys Rev B, 1991, 43:1993-2006.
  • 3Stokbro K, Taylor J, Brandbyge M, et al. Theoretical study of the nonlinear conductance of di-thiol benzene coupled to Au (111) surfaces via thiol and thiloate bonds. Comput Mater Sci, 2003, 27:151-160.
  • 4Ellenbogen J C, Love J C. Architectures for molecular electronic computers: 1. Logic structures and an adder designed from molecular electronic diodes. Proc IEEE, 2000, 88:386-426.
  • 5Stan M R, Franzon P D, Goldstein S C, et al. Molecular electronics: From devices and interconnect to circuits and architecture. Proc IEEE, 2003, 91:1940-1957.
  • 6Buttiker M, Imry Y, Landauer R, et al. Generalized many-channel conductance formula with application to small rings. Phys Rev B, 1985, 31:6207-6215.
  • 7Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354:56-58.
  • 8Hu J T, Ouyang M, Yang P D, et al. Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature, 1999, 399:48-51.
  • 9Blase X, Charlier J C, De Vita A, et al. Theory of composite BxCrNz nanotube heterojunctions. Appl Phys Lett, 1997, 70:197-199.
  • 10Antonov R D, Johnson A T. Subband population in a single-wall carbon nanotube diode. Phys Rev Lett, 1999, 83:3274-3276.

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部