期刊文献+

基于联合参数估计的最大似然调制识别算法 被引量:5

ML-based modulation identification algorithm based on joint parameter estimation
下载PDF
导出
摘要 提出一种针对延迟信号相位差的联合参数估计最大似然调制识别算法,通过对相邻信号相位差的分布建立等均值高斯混合分布模型,同时完成了延迟信号相位差最大似然调制识别中所需的频差和噪声似然参数的估计。此算法无需信号先验知识,可通过EM算法同时估出所需的相关参数,极大地降低了最大似然调制识别算法中参数估计的复杂度,可应用于MPSK信号的调制识别,也可用于MQAM信号的相位方式识别。 A new ML-based modulation identification algorithm for the phase angle difference between original signal and delayed signal is proposed. A two-state Gaussian mixture distribution model is established to fit the distribution of phase angle difference of the adjacent signals, and the parameters of Gaussian mixture distribution are solved by EM algorithm at the same time, then the parameters of mean and variance are used for ML-based modulation identifi- cation. Experimental results show that the parameters can be effectively estimated without knowing the modulation type, and the algorithm also can gain high probability of correct classification in the MPSK modulation identification or the phase mode identification of MQAM signals.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2008年第12期2509-2514,共6页 Chinese Journal of Scientific Instrument
基金 国家863高科技发展计划重大课题(2007AA12Z323) 国家自然科学基金(60772139) 陕西省自然科学基金(2006F12)资助项目
关键词 调制识别 频偏估计 高斯混合分布模型 EM算法 modulation identification frequency offset estimation Gaussian mixture distribution model EM algorithm
  • 相关文献

参考文献12

  • 1NANDI A K, AZZOUZ E E. Algorithms for automatic modulation recognition of communication signals [ J ]. IEEE Transactions on Communications, 1998,46 (4): 431-436.
  • 2MENDEL W W. Maximum-likelihood classification for digital amplitude-phase modulations[ J]. IEEE Transactions on Communications, 2000,48 (2) : 189-193.
  • 3DOBRE O A, NESS Y B, SU W. Robust QAM modulation classification algorithm using cyclic cumulants [ C ]. Proc. IEEE WCNC, 2004:745-748.
  • 4CHEN J, KUO Y H, LI J D. Digital modulation identification by wavelet analysis[C]. Proc. IEEE ICCIMA, 2005.
  • 5吴月娴,葛临东,许志勇.常用数字调制信号识别的一种新方法[J].电子学报,2007,35(4):782-785. 被引量:26
  • 6LEE J S, MILLER L E. CDMA systems engineering handbook[M]. J. S. Lee Associates, Inc., 1998.
  • 7CHIPMAN H, KOLACZK E, MC CULLOCH R. Adaptive Bayesian wavelet shrinkage[ J]. Journal of the American Statistical Association, 1997,440(90) : 1413-1421.
  • 8DEMPSTER A P, LAND N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm[ J]. Journal of the Royal Statistical Society, Series B, 1997, 39 ( 1 ) : 1-38.
  • 9罗明,杨绍全.基于动态聚类的MPSK信号调制分类[J].电路与系统学报,2005,10(2):83-86. 被引量:2
  • 10HONGDK, KIM D J, LEEYJ, et al. A simple interpolation technique for the DFT for joint system parameters estimation in burst MPSK transmissions [ J ]. IEEE Trans Commun. , 2003,51 (7) : 1051-1056.

二级参考文献16

  • 1[1]P. Chow,et al.. A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels. IEEE Trans. Comm. , 1995,43 (2):773~775.
  • 2[2]C. Wong,et al.. Multiuser OFDM with adaptive Subcarrier,bit and power allocation. IEEE Journal on Selected Areas in Communications, 1999,17(10): 1747~ 1758.
  • 3[3]Stuart D S,Michael A T. Overlapped discrete Multitone Modul-ation for high speed copper wire communications[J]. IEEE Journal on Selected Areas in Communications, 1995,13 (9) : 1571~ 1585.
  • 4Nandi A K,Azzouz E E.Algorithms for automatic modulation recognition of communication signals[J].IEEE Trans Comm,1998,46(4):431-436.
  • 5Wong M L D,Nandi A K.Automatic digital modulation recognition using spectral and statistical features with multi-layer perceptrons[A].In Proc of Sixth International Symposium on Signal Processing and its Applications (ISSPA' 01)[C].Kuala Lumpur,Malaysia,13-16 vol.2:August,2001.390-393.
  • 6Zhao Y Q,Ren G H,Wang X X,et al.Automatic digital modulation recognition using artificial neural networks[A].In Proc of IEEE Int Conf Neural Networks & Signal Processing[C].Nanjing,China,Dec.14-17,2003.257-260.
  • 7Dubuc C,Boudreau D.An automatic modulation recognition algorithm for spectrum monitoring applications[A].In Proc of IEEE International Conference on Communications (ICC' 99)[C].Vancouver,Canada,1999.732-736.
  • 8Gao Y L,Zhang Z Z.Modulation recognition based on combined feature parameter and modified probabilistic neural network[A].In Proc of the Sixth World Congress on Intelligence Control and Automation[C].Dalian,China,June 21-23,2006.2954-2958.
  • 9Hansen L K,Salamon P.Neural network ensembles[J].IEEE Trans Pattern Analysis and Machine Intelligence,1999,12(10):993-1001.
  • 10Wilson S G.Digital Modulation and Coding[M].Beijing:Publishing House of Electronics Industry,1998.

共引文献26

同被引文献60

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部