期刊文献+

基于特征的车辆目标复合探测方法研究 被引量:6

Vehicle detection algorithm based on characteristic knowledge
下载PDF
导出
摘要 联合使用车底阴影、边缘信息、轮廓对称、灰度对称、水平线对称等车辆先验知识,提出一种基于特征的车辆检测方法。首先在图像中构建具有车底阴影特性的感兴趣区域;然后在感兴趣区域中分析车辆的边缘置信度,滤除其中平坦的背景区域;接下来利用轮廓对称或灰度对称定位潜在车辆;最后在潜在车辆区域中进一步分析对称性测度和水平线特性。只有具有充分的边缘、对称性和水平线特性的潜在车辆区域才被检测为车辆。实验结果表明:该方法在城市环境且不考虑遮挡的情况下,车辆有效识别率达到90%以上。 A vehicle detection algorithm based on knowledge in image sequences is proposed for driver assistance system. Images are acquired by a camera installed in a moving vehicle. Prior knowledge of the vehicles, such as shadows underneath the vehicles, rich edge information, contour symmetry, gray level symmetry, horizontal line symmetry and etc, is combined. Firstly, the regions of interest in the image plane that exhibit the characteristics of the shadow projected underneath a vehicle are selected. Next the edge confidence is analyzed in the regions of interest ; contour symmetry or gray level symmetry is used to locate the potential vehicles. Symmetry measure and horizontal line feature of the regions of the potential vehicle are further analyzed. Only those potential vehicle regions that contain enough edge confidence, symmetry measure, symmetric horizontal lines are identified as vehicles. The approach is suitable for detecting vehicles observed in frontal view or rear view. Experiment results illustrate that under environment of town, TPR is up to 90% without considering sheltering, which meets the application requirements.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2008年第12期2553-2558,共6页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(60775042) 中国博士后科学基金(20060400400)资助项目
关键词 基于知识 车辆检测 阴影 边缘置信度 轮廓对称 灰度对称 水平线 knowledge-based vehicle detection shadow edge confidence contour symmetry gray level symme- try horizontal line
  • 相关文献

参考文献11

  • 1KALINKE T, TZOMAKAS C, VON SEELEN W. A texture-based object detection and an adaptive model-based classification[ C ]. Proc. IEEE Int, Conf. on Intelligent Vehicle, Stuttgart, Germany, October 1998:143-148.
  • 2GUO D, FRAICHARD T, XIE M, et al. Color modeling by spherical influence field in sensing driving environment[ J]. IEEE Intelligent Vehicle Symposium, 2000: 249-254.
  • 3TZOMAKAS C, VON SEELEN W. Vehicle detection in traffic scenes using shadows[ R]. Internal Report 98-06.
  • 4KALINKE T, TZOMAKAS C, VON SEELEN W. A texture-based object detection and an adaptive model-based classification[C]. Procs. IEEE Int. Conf. on Intelligent Vehicles, Stuttgart, Germany, October 1998:143-148.
  • 5BETKE M, HARITAOGLU E, DAVIS L S. Real-time multiple vehicle detection and tracking from a moving vehicle[J]. Machine Vision and Applications, 2000, 12 (2) :69-83.
  • 6KUEHNLE A. Symmetry-based recognition of vehicle rears [ J ]. Pattern Recognition Letters, 1991, 12: 249-258.
  • 7ZIELKE T, BRAUCKMANN M, SEELEN W. Intensity and edge-based symmetry detection with an application to car-following[ J]. GVGIP: Image Understanding, 1993, 58(2) :177-190.
  • 8VAN LEEUWEN M B, GROEN C A. Vehicle detection with a mobile camera[ J]. IEEE Robotics & Automation Magazine, 2005,12:37-43.
  • 9DU Y, PAPANIKOLOPOULOS N. Real-time vehicle following, through a novel symmetry- based approach [ C]. IEEE International Conference on Robotics and Automation, 1997,4:3160-3165.
  • 10HOFFMANN C, DANG T, STILLER C. Vehicle detection fusing 2D visual features [ C ]. 2004 IEEE Intelligent Vehicles Symposium University of Parma, Parma, Italy, June 14-17, 2004.

同被引文献64

引证文献6

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部