期刊文献+

基于参数模型的VCG信号计算机辅助检测研究 被引量:1

Study of computer assisted VCG signal detection based on parametric model
下载PDF
导出
摘要 在心脏病学上,2种最基本和流行的心电导联体系是标准心电(ECG)导联体系和法兰克心电向量(VCG)体系(简称:法兰克心电导联体系)。多数现存的计算机辅助心电分析是在标准心电导联体系上展开的。实际上,与标准心电导联体系比较而言,法兰克心电导联体系由于其相互间正交的原因与解剖学有着更为紧密的联系。为此,本文提出从法兰克心电导联体系中提取心电特征的研究,并以心肌梗死(MI)心电信号为研究对象,其数据取自PTB诊断ECG数据库。利用多变量回归建模技术对VCG进行建模,并将多变量回归模型系数作为VCG分类特征。实验结果表明,在本文的研究条件下,法兰克心电导联体系比标准心电导联体系能取得更好的分类效果。 There are two most popular and basic lead systems used in cardiology, namely, standard electrocardiogram (ECG) lead system and Frank vectorcardiogram (VCG) lead system. Most of the existing computer assisted analyses of ECG signals are based on the standard ECG leads. In practice, Frank VCG leads that are orthogonal each other are more correlated with anatomy compared with the standard ECG leads. The ECG feature extraction for Frank VCG leads is studied in this research. Myocardial infarction (MI) VCG signals taken from PTB diagnostic ECG database were employed for the analysis in this study. Multivariate autoregressive (AR) modeling technique was performed on the VCGs, and the multivariate AR coefficients were used as VCG features for the classification. Experimental results show that Frank VCG leads can obtain better classification effect than standard ECG leads under current condition.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2008年第12期2565-2569,共5页 Chinese Journal of Scientific Instrument
基金 浙江省自然科学基金(Y104284)资助项目
关键词 心肌梗死 VCG 特征 分类 诊断 myocardial infraction VCG feature classification diagnosis
  • 相关文献

参考文献16

  • 1GOLDMAN M J. Principles of clinical electrocardiography[ M]. 11 th ed. Los Altos, CA:LANGE Medical Publications, 1982.
  • 2GARCIA J, LANDER P, SORNMO L. Comparative study of local and Karhounen-Loeve based ST-T indexes in recordings from human subjects with induced myocardial ischemia[J]. Comput. Biomed. Res., 1998,31: 271-297.
  • 3PAPADIMITRIOU S, MAVCROUDI S, VLADUTU L. Ischemia detection with a self-organizing map supplemented by supervised learning [ J ]. IEEE Trans. on Neural Networks, 2001,12( 3 ) :503-514.
  • 4TERKELSEN C J, NORGAARD B L, LASSEN J F, et al. Telemedicine used for remote prehospital diagnosing in patients suspected of acute myocardial infarction [ J ]. Journal of Internal Medicine, 2002,252:412-420.
  • 5ROSARIA S, CARLO M. Artificial neural networks for automatic ECG analysis[ J]. IEEE Trans. on Signal Processing, 1998,46 ( 5 ) : 1417-1425.
  • 6COSTAS P, DIMITRIOS I F, ARISTIDIS L, et al. An ischemia detection method based on artificial neural networks[ J]. Arti Intell Med, 2002,24 : 167-178.
  • 7ZAHAN S. A fuzzy approach to computer-assisted myocardial ischemia diagnosis [ J ]. Arti Intell Med, 2001, 21:271-275.
  • 8GRAMATIKOV B, BRINKER J, YI-CHUN S, et al. Wavelet analysis and time frequency distributions of the body surface ECG before and after anginoplasty [ J ]. Comput Meth Program Biomed, 2000,62:87-98.
  • 9叶文宇,李刚,林凌,谌雅琴,虞启琏.自适应相干模板法滤波的分析及改进[J].仪器仪表学报,2004,25(2):248-252. 被引量:7
  • 10朱凌云,吴宝明,王正国,李刚,曹长修,朱新建,闫庆广.移动心电监护系统QRS波的实时检测算法研究[J].仪器仪表学报,2005,26(6):603-607. 被引量:34

二级参考文献30

  • 1Jalaleddine SMS, Hutchens CG, Strattan RD, et al. ECG data compression techniques-a unified approach[J]. IEEE Trans on BME.1990,37:329-343.
  • 2Duda RO, Hart PE. Pattern classification[M]. United States of america: A wiley-Interscience Publication, John Wiley & Sons. INC 2001,219-223.
  • 3Caswell SA, Kluge KS, Chiang CMJ. Pattern recognition of cardiac arrhythmias using two intracardiac channels[C]. Proc Comp Cardiol. 1993,181-184.
  • 4Zhou SH, Rautaharju PM, Calhoun HP. Selection of a reduced set of parameters for classification of ventricular conduction defects by cluster analysis[C]. Proc Comp Cardiol. 1993,879-882.
  • 5Minami KC, Nakajima H, Toyoshima T. Real-time discrimination of ventricular tachyarrythmia with Fourier-transform neural network[J]. IEEE Trans Biomed Eng. 1999,46:179-185.
  • 6Afonoso VX, Tompkins WJ. Detecting ventricular fibrillation: Selecting the appropriate time-frequency analysis tool for the application[J]. IEEE Eng Med Biol Mag. 1995,14:152-159.
  • 7Zhang XS, Zhu YS, Thakor NV, et al. Detecting ventricular tachycardia and fibrillation by complexity measure[J]. IEEE Trans Biomed Eng. 1999,46:548-555.
  • 8Chen SW. Two-stage discrimination of cardiac arrhythmias using a total least squares-based Prony modeling algorithm[J]. IEEE Trans Biomed Eng. 2000,47:1317-1326.
  • 9Arnold M, Miltner WHR, Witte H. Adaptive AR modeling of nonstationary time series by means of Kalman filtering[J]. IEEE Trans Biomed Eng. 1998,45:553-562.
  • 10Ham FM, Han S. Classification of cardiac arrhythmias using fuzzy ARTMAP[J]. IEEE Trans Biomed Eng.1996,43:425-430.

共引文献46

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部