期刊文献+

基于本地网络的蠕虫检测定位算法 被引量:2

原文传递
导出
摘要 蠕虫的传播对计算机网络有极大危害,是目前网络安全研究中的一大热点问题.文中分析了一类采用TCP协议的蠕虫扫描时的流量特征,提出了基于本地网络流量信息的蠕虫检测方法,并针对高速扫描和低速扫描的不同特点调整了定位方法,使其能检测定位不同扫描速率的蠕虫.NS-2仿真实验表明该方法能够快速检测到蠕虫.
出处 《中国科学(E辑)》 CSCD 北大核心 2008年第12期2099-2111,共13页 Science in China(Series E)
基金 国家自然科学基金资助项目(批准号:60403028)
  • 相关文献

参考文献17

  • 1Weaver N, Paxson V, Staniford S, et al. A taxonomy of computer worms. In: Proceedings of the 2003 ACM Workshop on Rapid Malcode(WORM'03). New York: ACM press, 2003.11 18.
  • 2Seeley D. A tour of the worm. In: USENINX Association Winter Conference 1989 Proceedings. San Diego, 1989. 287--304.
  • 3Moore D, Shannon C, Brown J. Code-Red: a case study on the spread and victims of an Internet worm. In: Proceedings of the 2nd ACM SIGCOMM Workshop on Internet measurment. New York: ACM press, 2002. 273 284.
  • 4Gu G F, Sharif M, Qin X Z, et al. Worm detection, early warning and response based on local victim information. In: Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC'04). Los Alamitos: IEEE Computer Society, 2004. 136-145.
  • 5Lai S C, Kuo W C, Hsieh M C. Defending against Internet worm-like infestations. In: Proceedings of the 18th International Conference on Advanced Information Networking and Applications(AINA 2004). Los Alamitos: IEEE Computer Society, 2004. 152--157.
  • 6Kim H, Kang I, Bahk S. Real-time visualization of network attacks on high-speed links. IEEE Netw, 2004, 18(5): 30--39.
  • 7Berk V, Bakos G, Morris R. Designing a framework for active worm detection on global networks. In: Proceedings of the 1st IEEE International Workshop on Information Assurance (IWIA'03). Los Alamitos: IEEE Computer Society, 2003. 13--23.
  • 8Wu J, Vangala S, Gao L, et al. An efficient architecture and algorithm for detecting worms with various scan techniques. In: Proceedings of the Network and Distributed System Security Symposium(NDSS 2004). Washington: The Internet Society, 2004. 143-156.
  • 9Yang X Y, Zeng M, Zhao R, et al. A novel LMS method for real time network traffic prediction. In: Computational Science and Its Applications-ICCSA 2004. Heidelberg: Springer, 2004. 127--136.
  • 10Shi Y, Yang X Y, Zhu H J. A flooding-based DoS/DDoS detecting algorithm based on traffic measurement and prediction. In: Advances in Information and Computer Security. Heidelberg: Springer, 2006. 252-267.

同被引文献16

  • 1卿斯汉,文伟平,蒋建春,马恒太,刘雪飞.一种基于网状关联分析的网络蠕虫预警新方法[J].通信学报,2004,25(7):62-70. 被引量:40
  • 2文伟平,卿斯汉,蒋建春,王业君.网络蠕虫研究与进展[J].软件学报,2004,15(8):1208-1219. 被引量:187
  • 3钱旭,顾巍,陈凌晖,丁晓峰.网络蠕虫检测系统的设计和实现[J].现代图书情报技术,2007(1):44-48. 被引量:3
  • 4张新宇,卿斯汉,李琦,李大治,何朝辉.一种基于本地网络的蠕虫协同检测方法[J].软件学报,2007,18(2):412-421. 被引量:25
  • 5田俊峰,张弛,刘涛,李宁.基于本地主机传播行为的蠕虫预警新方法[J].通信学报,2007,28(5):80-89. 被引量:5
  • 6Mowbray M.Network Worm Detection using Markov's and Cantelli's Inequalities[R].U.K:HP Laboratories,2009:555-568.
  • 7Akujobi F,Lambadaris I,Kranalcis E.An Integrated Approach to Detection of Fast and Slow Scanning Worms[C]//ACM Symposium on Information,Computer and Communications Security(ASIACCS 2009).[s.l.]:[s.n.],2009:80-91.
  • 8Kim H J,Jung.C.Na,Jong S.Song.Network Traffic Anomaly Detection based on Ratio and Volume Analysis[J].Internstional Journal of Computer Science and Network Security,2006,6(5):190-193.
  • 9Lee S H,Kim H J,Na J C,et al.Abnormal Tragic Detection and Its Implementation[C]//The 7th International Conference On Advanced Communication Technology (ICACT2005).[s.l.]:[s.n.],2005:246-250.
  • 10David Dagon,Qin Xinzhou,Gu Guofci,et al .HoneyStat:local worm detection using honeypots[C].Proc of 7th International Symposium on Recent Advances in Intrusion Detection,2004:39- 58.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部