期刊文献+

仿射构形的可约性

The reducibility of affine hyperplane arrangements
下载PDF
导出
摘要 用矩阵方法讨论仿射超平面构形的可约性。通过证明仿射构形可约等价于对应的中心构形可约,把仿射构形因子分解存在惟一性归结为中心构形相应的已知结论,得到仿射超平面构形因子分解的存在惟一性。 The reducibility of affine hyperplane arrangements is discussed by using the matrix method. It is proved that an affine arrangement is reducible if, and only if, its corresponding central arrangement is reducible. Thus the existence and uniqueness of affine hyperplane arrangement decompositions is changed into that of the corresponding central hyperplane arrangement decompositions and, therefore, the existence and uniqueness of affine hyperplane arrangement decompositions is obtained.
出处 《北京化工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第6期107-112,共6页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
基金 国家自然科学基金(106711009)
关键词 仿射构形 可约 矩阵 分解 affine arrangement reducibility matrix decomposition
  • 相关文献

参考文献5

  • 1Orlik P, Terao H. Arrangements of hyperplanes [ M ]. Berlin: Springer-Verlag, 1992.
  • 2Orlik P, Terao H. Commutative algebras for arrangements[J]. Nagoya Math J, 1994,134(1):65 - 73.
  • 3Wiens J. The module of derivations for an arrangement of subspaces[J]. Pacific Journal of Mathematics, 2001, 198 (2) :501 - 512.
  • 4程淑华,牛兴文.超平面中心构形可约性的研究[J].北京化工大学学报(自然科学版),2006,33(5):100-102. 被引量:3
  • 5余建明,姜广峰.超平面构形的可约性[J].中国科学(A辑),2006,36(12):1422-1430. 被引量:4

二级参考文献22

  • 1Richard P.An introduction to hyperplane arrangements[M].America:Park City Mathematics Series,2004:1-39.
  • 2Orlik P,Terao H.Arrangements of hyperplanes[M].Berlin,Heidelberg:Springer-Verlag,1992:1-57.
  • 3Jacobsion N.Basic algebra[M].Berlin,Heidelberg:Springer-Verlag,2002.
  • 4Orlik P,Terao H.Arrangements of Hyperplanes.Berlin,Heidelberg:Springer-Verlag,1992
  • 5Cordovil R.On the center of the fundamental group of the complement of a hyperplane arrangement.Portugaliae Mathematica,1994,51:363-373
  • 6Cohen D.Suciu A.On Milnor fibrations of arrangements.J Lodon Math Soc,1995,51:105-119
  • 7Cohen D,Orlik P.Some cyclic covers of complements of arrangements.Topology & Appl,2002,118:3-15
  • 8Cohen D,Orlik P.Ganss-Manin connections for arrangements,Ⅰ.Eigenvalues.Compositio Math,2003,136:299-316
  • 9Cohen D,Orlik P.Gauss-Manin connections for arrangements,Ⅱ.Nonresonant weights.Amer J Math,2005,127:569-594
  • 10Cohen D,Orlik P.Gauss-Manin connections for arrangements,Ⅲ.Formal connections.Trans Amer Math Soc,2005,357:3031-3050

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部