期刊文献+

利用分区ALE算法数值模拟圆柱湍流涡致振动 被引量:2

Numerical simulation of turbulent vortex induced vibration of a circular cylinder adopted ALE domain decomposition method
下载PDF
导出
摘要 用分区算法结合任意拉格朗日-欧拉法(ALE)数值模拟了圆柱湍流涡致振动。求解基于非交错网格系统,压力求解采用压力泊松方程提法,湍流模型采用标准k-ε模型和重整化群(RNG)k-ε模型。计算取中等雷诺数Re=5000、10000、15000、25000、50000等,质量系数M=10,阻尼系数ζ=0.00331,自振频率fn=0.18315、0.1628。计算结果表明:湍流涡致振动下圆柱时均阻力系数大于孤立圆柱绕流,而升力系数(振幅)值都小于孤立圆柱绕流。随着雷诺数增大,湍流粘性系数随之增大,但湍动能和湍流耗散率变化趋势不明显。对孤立圆柱绕流,研究结果与前人实验结果基本相符。 The turbulent vortex induced vibrations of a.circular cylinder were simulated. The flow was predicted to be turbulent,and was solved by the ALE domain decomposition method,in which the Poisson pressure equation formation was adopted. The standard κ-ε model and RNG κ-ε model were employed for turbulence. In this study, the Reynolds number was from Re=5000 to 50000, the non-dimensional mass coefficient was 10, damping coefficient was 0. 00331,and the natural frequency of the cylinder was 0. 18315 or 0. 1628. The results showed that the time averaged drag coefficients of the cylinder was larger than that of the stationary cylinder,while the amplitude of the lift coefficients was less than that of the stationary one. The turbulent viscosities increased with Reynolds number obviously, while the kinetic energy and dissipation were not obvious. The results compared essentially with previous experiments for flow around circular cylinder.
出处 《空气动力学学报》 EI CSCD 北大核心 2008年第4期544-548,共5页 Acta Aerodynamica Sinica
基金 973计划项目(2006CB705400) 宁波大学宁波旅港同乡会讲座基金资助
关键词 湍流 涡致振动 ALE分块耦合法 圆柱绕流 单自由度振动 turbulent model vortex induced vibration ALE domain decomposition method flow around acircular cylinder vibration of one-degree-of-freedom
  • 相关文献

参考文献7

  • 1LONGATTE E, BENDJEDDOU Z, SOULI M. Application of arbitrary Lagrange Euler formulation to flow-induced vibration problems[J]. Journal of Pressure Vessel Technology, 2003,125 : 411-417.
  • 2GUILIMINEAU E, QUEUTEY P. Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow[J]. Journal of Fluids and Structures ,2004,19 : 449-466.
  • 3ACHENBACH E. Distribution of local presure and skin friction around a circular cylinder in cross-flow up to Re =5 × 10^6 [J]. J. Fluid Mechanics, 1968, 34 (4): 625- 630.
  • 4RENAn-lu CHENWen-qu LIGuang-wang.AN ALE METHOD AND DDM WITH HIGH ACCURATE COMPACT SCHEMES FOR VORTEX-INDUCED VIBRATIONS OF AN ELASTIC CIRCULAR CYLINDER[J].Journal of Hydrodynamics,2004,16(6):708-715. 被引量:9
  • 5FU D X, MAY W. A high order accurate difference scheme for complex flow fields [J]. J. Comput Phys,1997,134:1-15.
  • 6BEARMAN P W. Vortex shedding from oscillating bluff bodies[J]. Ann. Rev. Fluid Mech. , 1984.16: 195-222.
  • 7ABDALLAH S. Numerical solution for pressure Poisson equation with Neumann boundary condition using nonstaggered grid, 1,2 [J]. J. of Comp. Ph.ys. , 1987, 70, 182-202.

二级参考文献15

  • 1ANAGNOSTOPOUOS P. and BEARMAN P. W. Response characteristics of a vortex-excited cylinder at low Reynolds numbers[J]. Journal of Fluids and Structures,1992, 6: 39-50.
  • 2FEIREISEN J. M., MONTGOMERY M. D. and FLEETER S. Unsteady aerodynamic forcing functions:a comparison between linear theory and experiment[J].Journal of Turbomachinery, 1994, 116 : 676-685.
  • 3WEST G. S. and APELT C. J. Fluctuating lift and drag forces on finite lengths of a circular cylinder in the subcritical Reynolds number range[J]. Journal of Fluids and Structures, 1997, 11: 135-158.
  • 4KOOPMANN G. H. The vortex wakes of vibrating cylinders at low Reynolds numbers[J]. Journal of Fluid Mechanics, 1967, 28.. 501-512.
  • 5GRIFFIN O. M. and VOTAW C. W. The vortex street in the wake of a vibrating cylinder[J]. Journal of Fluid Mechanics, 1972, 51:31-48.
  • 6WEIR. , SEKINE A. and SHIMURA M. Numerical analysis of 2D vortex-induced oscillations of a circular cylinder[J]. International Journal for Numerical Methods in Fluids, 1995, 21: 993-1005.
  • 7KHALAK A. and WILLIAMSON C. H. K. Dynamics of a hydro-elastic cylinder with very low mass and damping[J]. Journal of Fluids and Structures, 1996, 10:455-472.
  • 8ZHOU C. Y. , SO R. M. C. and LAM K. Vortex-induced vibrations of an elastic circular cylinder[J]. Journal of Fluids and Structures, 1999, 13: 165-189.
  • 9CAO Feng-chan. XIANG Hai-fan. Numerical analysis of vortex-induced vibration of square and circular cylinder at low Reynolds number[J]. Journal of Tongji University, 1998, 26(4): 382-386. (in Chinese).
  • 10CAO Feng-chan. XIANG Hai-fan. Calculation of unsteady flow around circular cylinder and vortex-induced vibration[J]. Journal of Hydrodynamics, Ser. A, 2001,16(1) 111-118. (in Chinese).

共引文献8

同被引文献7

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部