期刊文献+

粒子群-神经网络集成学习算法气象预报建模研究 被引量:24

STUDY ON THE METEOROLOGICAL PREDICTION MODEL USING THE LEARNING ALGORITHM OF NEURAL ENSEMBLE BASED ON PSO ALGORITHMS
下载PDF
导出
摘要 针对BP神经网络在实际气象预报应用中,网络结构难以确定以及网络极易陷入局部解问题,提出一种基于神经网络的粒子群集成学习算法的气象预报模型,以BP算法为基本框架,在学习过程中引入粒子群算法,优化设计神经网络的网络结构和初始连接权,获得一组合适网络结构和初始连接权,再进行新一轮BP神经网络训练,获得一批独立的神经网络个体,以"误差绝对值和最小"为最优准则,采用线性规划方法计算各集成个体的权系数,生成神经网络的输出结论,以此建立短期气候预测模型。以广西的月降水量进行实例分析,计算结果表明该方法学习能力强、泛化性能高,能够有效提高系统预测的准确率。 For the difficulty in deciding on the structure of BP network in real meteorological application and the tendency for the network to transform to an issue of local solution, a hybrid Particle Swarm Optimization Algorithm based on Artificial Neural Network(PSO-BP) model is proposed for monthly mean rainfall of the whole area of Guangxi. It combines Particle Swarm Optimization(PSO) with BP, that is, the number of hidden nodes and connection weights are optimized by the implementation of PSO operation. The method produces a better network architecture and initial connection weights, trains the traditional backward propagation again by training samples. The ensemble strategy is carried out for the linear programming to calculate the best weights based on the "east sum of the error absolute value" as the optimal rule. The weighted coefficient of each ensemble individual is obtained. The results show that the method can effectively improve learning and generalization ability of the neural network.
出处 《热带气象学报》 CSCD 北大核心 2008年第6期679-686,共8页 Journal of Tropical Meteorology
基金 国家自然科学基金资助项目(40675023) 国家科技部社会公益性研究专项(2004DIB3J122)共同资助
关键词 神经网络集成 粒子群优化 最优组合 neural network ensemble particle swarm optimization optimal combination
  • 相关文献

参考文献26

二级参考文献46

  • 1王艳姣,张鹰,邓自旺,宋德众.RBF神经网络的汛期旱涝预报方法研究[J].热带气象学报,2005,21(1):100-106. 被引量:18
  • 2李维京,张培群,李清泉,王兰宁,刘益民,史学丽,张祖强,刘一鸣,胡国权,党鸿雁,张芳,陈丽娟,孙除荣,赵其庚,董敏.动力气候模式预测系统业务化及其应用[J].应用气象学报,2005,16(B03):1-11. 被引量:91
  • 3方剑,席裕庚.神经网络结构设计的准则和方法[J].信息与控制,1996,25(3):156-164. 被引量:21
  • 4王繁强,徐文金,陈杰伦,王莘.B-P算法在青海省降雨分区分级预报中的应用[J].高原气象,1997,16(1):105-112. 被引量:9
  • 5胡江林.神经网络模型用于湖北省月降水量预报的探讨[J].暴雨.灾害,1999,(1):36-41.
  • 6俞康庆 胡江林 王登炎等.武汉区域中心暴雨数值预报模式(MAPS)的业务试验[A]..台风暴雨数值预报方法和技术研究[C].北京:气象出版社,1996.572-580.
  • 7[1]Hornik K,Stinchcombe M,White H.Multilayer feed-forward networks are universal approximators[J].Neural Networks,1989,2(5):359-366.
  • 8[2]Rumelhart D E,Hinton G E,Williams R J.Learning representations by back propagating errors[J].Nature,1986,323(11):533-536.
  • 9[3]Sexton R S,Dorsey R E.Reliable classification using neural networks:a genetic algorithm and backpropagation comparison[J].Decision Support Systems,2000,30(1):11-22.
  • 10[4]Yang J M,Kao C Y.A robust evolutionary algorithm for training neural networks[J].Neural Computing and Application,2001,10(3):214-230.

共引文献491

同被引文献459

引证文献24

二级引证文献162

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部