期刊文献+

长悬臂桁架受横向集中力的拓扑优化 被引量:1

Topological Optimum of Long Cantilever Truss under Transverse Concentrated Load
下载PDF
导出
摘要 用解析方法推导拓扑优化最小重量长悬臂桁架.桁架在应力约束下,自由端受横向集中力作用,桁架宽度为常数,它的节长、结点坐标、腹杆和弦杆的角度,以及所有杆的横截面尺寸均为设计变量.分析结果表明,拓扑优化桁架中的各节腹杆的位置和横截面面积相同,中间结点位于每节1/4位置.当结构长度趋于无限长时,腹杆趋于30°,60°,相对45°桁架的体积差别不大,与类桁架连续体的体积差别也很小. Topology optimization design of long cantilever truss with minimum weight is derived analytically. A transverse concentrated load is applied at its free end. The truss with constant width is subjected to stress constraints. The panel lengths, nodal coordinates, the angles of the chords, the web members and the cross-sectional areas are taken as design variables. It is proved that there is no difference of the positions and the cross-sectional areas of web members between different panels in topological optimum truss. The middle nodes of web members locate at position of 1/4 of panel length. The topological optimum truss is similar to the truss with web members of 45° when the topological optimum truss tends to infinite long. The difference of volume between truss-like continuum and corresponding discrete truss is slight.
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2009年第1期80-84,共5页 Journal of Huaqiao University(Natural Science)
基金 国家自然科学基金资助项目(10872072) 教育部科技研究重点项目(208169) 福建省自然科学基金计划资助项目(E0640010)
关键词 拓扑优化 结构优化 桁架 悬臂梁 structural optimization topology optimization truss cantilever
  • 相关文献

参考文献17

  • 1ROZVANY G I N, BENDSΦE M P. KIRSCH U. Layout optimization of structures [J]. Applied Mechanics Reviews. 1995. 18(2): 41-119.
  • 2ESCHENAUER H A, OLHOFF N. Topology optimization of continuum structures: A review[J]. Applied Mechanics Reviews, 2001, 54(4):331-389.
  • 3王全凤.结构优化设计的新进展[J].华侨大学学报(自然科学版),1992,13(3):353-357. 被引量:1
  • 4BENDSΦE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method [J]. Comput Meth Appl Mech Engng, 1988, 71: 197-224.
  • 5XIE Y M, STEVEN G P. A simple evolutionary procedure for structures optimization[J]. Comput Struet, 1993, 49 : 885-896
  • 6OSHER S, FEDKIW R. Level set methods and dynamic implicit surfaces[M]. New York: Springer,g003.
  • 7刘书田,程耿东.复合材料应力分析的均匀化方法[J].力学学报,1997,29(3):306-313. 被引量:46
  • 8隋允康,彭细荣.结构拓扑优化ICM方法的改善[J].力学学报,2005,37(2):190-198. 被引量:79
  • 9LEWINSKI T, ZHOU M, ROZVANY G I N. Extended exact solutions for least-weight truss layouts( Ⅰ ) : Cantilever with a horizontal axis of symmetry[J]. Int J Mech Sci, 1994, 36(5) : 375-398.
  • 10LEWINSKI T, ZHOU M, ROZVANY G I N. Extended exact solutions for least-weight truss layouts( Ⅱ ) : Unsymmetric cantilevers[J]. Int J Mech Sci, 1994, 36(5): 399-419.

二级参考文献8

共引文献122

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部