期刊文献+

直流输电控制器原理及稳态特性分析 被引量:20

Controller of HVDC transmission system and its steady-state performance analysis
下载PDF
导出
摘要 高压直流输电系统包含了各种分层控制方式,具有高度的可控性,其目的在于向系统提供高效稳定的运行。主要对分层控制中极控制层的控制器原理进行研究,并理论分析了整流侧定电流与定最小触发角控制器和逆变侧定关断角与定电流控制器从系统发生故障直至故障后系统再次恢复到稳态时的相关动作特性。在此基础上,基于PSCAD/EMTDC的仿真程序研究了CIGRE直流输电标准测试系统在有扰动的情况下系统恢复到稳态时运行点的变化以及恢复过程中相应控制模式的转换。结果证明,故障时极控制器能迅速作出反应,并能根据所处的工况自行切换控制模式,以满足系统的要求。 The hierarchical control is normally used in HVDC transmission systems to ensure its efficient and stable operation. The principle of polar-controller is analyzed and the corresponding action characteristics of the constant DC current & minimum firing angle controllers at rectifier side and the constant shutting angle DC current controllers at inverter side are theoretically studied from system fault occurrence till total system recovery. Based on this, the alteration of operating points and the conversion of control models during HVDC transmission system recovery from destabilization to steady state are analyzed thoroughly by using PSCAD/EMTDC. It reveals that, the polar-controller can swiftly respond to the fault and automatically switch over its control mode according to different working conditions to meet the requirements of system.
出处 《电力自动化设备》 EI CSCD 北大核心 2009年第1期65-69,共5页 Electric Power Automation Equipment
关键词 HVDC稳态响应 HVDC控制器 直流输电标准测试系统 控制策略 HVDC steady-state response HVDC controller Benchmark model of CIGRE control strategy
  • 相关文献

参考文献10

二级参考文献66

  • 1范澍,毛承雄,陆继明,张昌.多机电力系统神经网络最优励磁控制器[J].中国电机工程学报,2004,24(7):80-84. 被引量:14
  • 2A.B.波谢.直流输电结线及运行方式[M].北京:水利电力出版社,1979..
  • 3[8]Prabha Kunder.Power System Stability and Control.Prabha Kunder.Power System Stability and Control[M].北京:中国电力出版社,2001,12.
  • 4[12]J.Rittiger.Digital simulation of HVDC transmission and its correlation to simulator studies.IEE Conference Publication Number 345:414-416.
  • 5[13]P.Lehn,J.Rittiger,B.Kulicke.Comparison of the ATP version of EMTP and the NETOMAC program for simulation of HVDC systems.IEEE Transactions on Power Delivery,1995,10(4):2048-2053.
  • 6[1]Sanders S R, Noworolski J M, Liu X Z, et al. Generalized averaging method for power conversion circuits [J]. IEEE Trans on Power Electronics, 1991, 6(2):251-259.
  • 7[3]Stankovic A M, Mattavelli P, Caliskan V, et al. Modeling and analysis of FACTS devices with dynamic phasors[A]. IEEE Power Engineering Society Winter Meeting, 2000. , Singapore[C], Jan. 2000, 2:1440-1446.
  • 8[4]Stefannov P C, Stankovic A M, Modeling of UPFC operation under unbalanced conditions with dynamic phasors [J]. IEEE Trans on Power Systems, 2002, 17(2):395-403.
  • 9[5]Stankovic A M, Sanders S R, Dynamic phasors in modeling and analysis of unbalanced polyphase AC machines [J]. IEEE Trans on Energy Conversion, 2002, 17(1):107-113.
  • 10[6]Shengli Huang, Xiaoxin Zhou, Analysis of balanced and unbalanced faults in power systems using dynamic phasors [A]. ICEE-PES/CSEE, POWERCON2002, Kunming[C], China, 2002.

共引文献862

同被引文献237

引证文献20

二级引证文献160

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部