期刊文献+

基于原始曲面信息的变形网格的曲面重构 被引量:1

Surface Reconstruction for Deformed Mesh Based on Original Surface Information
下载PDF
导出
摘要 为了对有限元分析后的模型进行干涉检查和再分析,需对变形后的网格重建实体模型。基于原始曲面的信息,对变形后的网格进行区域分割,针对分割后的每个特征区域,分别对二次曲面和B-样条曲面采用了不同的重构方法。对于二次曲面,提出了一种基于等参数线的二次曲面参数提取的方法;对于B-样条曲面,给出了一种误差控制的B-样条曲面拟合的多步迭代方法。基于原始模型的拓扑结构,对重构后的曲面进行裁剪缝合得到变形后的实体模型。由于利用了原始曲面信息,使得曲面重构得以简化。实验表明,基于原始曲面信息的曲面重构方法可以快速有效地重构出任意复杂拓扑结构的变形后的曲面。 In order to perform interterence check and re--analysis for the deformed model after FEA, the solid model has to be reconstructed from the deformed mesh. Based on the information of the original surface, the deformed mesh was segmented into different feature regions. For each feature region, different method was applied for quadratic surfaces and B--spline surfaces separately. For quadratic surfaces, a method of parameter recognition was introduced based on the iso -- parameter line. For B--spline surfaces, an iterative method of surface reconstruction in given tolerance was presented. Based on the topology of the original model, the fitted surfaces were trimmed and sewed into a solid model. As the application of the original surface information, it simplifies the process of surface reconstruction. Results show that this method can quickly and efficiently reconstruct the deformed mesh with arbitrary complex topology.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2009年第1期38-43,共6页 China Mechanical Engineering
基金 国家自然科学基金资助项目(60473106) 国家自然科学基金资助重点项目(60333010) 高等学校博士学科点专项基金资助项目(20060335114)
关键词 二次曲面 参数提取 B-样条曲面 曲面重构 变形网格 quadratic surface parameter recognition B-- spline surface surface reconstruction de-formed mesh
  • 相关文献

参考文献14

  • 1Krishnamurthy V, Levoy M. Fitting Smooth Surfaces to Dense Polygon Meshes[C]//Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, ACM. New Orleans, Louisiana, 1996: 313-324.
  • 2李立新,谭建荣.G^1连续任意拓扑曲面的几何重建[J].计算机辅助设计与图形学学报,2001,13(5):407-412. 被引量:8
  • 3Eck M, Hoppe H. Automatic Reconstruction of B--spline Surfaces of Arbitrary Topological Type [C]//Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, ACM. New Orleans, Louisiana, 1996:325-334.
  • 4Hoppe H, Derose T, Duchamp T, et al. Piecewise Smooth Surface Reconstruction [C]//Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH. New York, 1994: 295-302.
  • 5Moore D, Warren J. Approximation of Dense Scattered Data Using Algebraic Surfaces[C]//Proceedings of the 24th Annual Hawaii International Conference on System Sciences. Kauai, 1991 : 681-690.
  • 6曾海飞,刘志刚,林志航.基于水平集的散乱数据点云曲面重构方法[J].西安交通大学学报,2006,40(5):614-617. 被引量:1
  • 7丁展,陈志杨,张三元,张引,叶修梓.基于Gauss Ball^+的二次曲面细分解与识别[J].计算机辅助设计与图形学学报,2007,19(1):31-36. 被引量:3
  • 8杜晓明,刘宇,熊有伦,黄小平.直纹面特性及类型判定[J].中国机械工程,2003,14(22):1957-1960. 被引量:8
  • 9陈浪,秦大同.反求工程中复杂曲面重构算法研究与实现[J].中国机械工程,2002,13(6):505-508. 被引量:13
  • 10Lukacs G, Martin R R, Marshall A D. Faithful Least--squares Fitting of Spheres, Cylinders, Cones and Tori for Reliable Segmentation[C]//Proceedings of the 5th European Conference on Computer Vision. Freiburg, Germany, 1998: 671-681.

二级参考文献33

  • 1刘元朋,张定华,张力宁.逆向工程中圆柱体提取方法的研究[J].计算机辅助设计与图形学学报,2005,17(9):1946-1949. 被引量:4
  • 2朱心雄.自由曲线曲面造型技术[M].北京:科学出版社,1999..
  • 3Osher S,Sethian J A.Fronts propagating with curvature dependent speed:algorithms based on Hamilton-Jacobi formulation [J].Journal of Computer Physics,1988,79(1):12-49.
  • 4Sethian J A.Numerical algorithms for propagating interfaces:Hamilton-Jacobi equations and conservation laws[J].Journal of Differential Geometry,1990,31(1):131-161.
  • 5Whitaker R.A level-set approach to 3D reconstruction from range data [J].The International Journal of Computer Vision,1998,29(3):203-231.
  • 6Zhao H.Implicit and nonparametric shape reconstruction from unorganized data using a variation level set method [J].Computer Vision and Image Understanding,2001,80(3):295-314.
  • 7Zhao H.A variation level set approach to multiphase motion [J].Journal of Computational Physics,1996,127(1):179-195.
  • 8Hoppe H.Surface reconstruction from unorganized points [D].Washington:University of Washington,1994.
  • 9Adalsteinsson D,Sethian J A.A fast level set method for propagating interfaces [J].Journal of Computational Physics,1995,118(2):269.
  • 10Kim S.An O(N) level set method for eikonal equations[J].SIAM Journal of Scientific Computing,2001,22(6):2178-2193.

共引文献28

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部