期刊文献+

广义KdV方程Fourier谱逼近的最优误差估计 被引量:2

Optimal Error Estimates for Fourier Spectral Approxiation of the Generalized KdV Equation
下载PDF
导出
摘要 分析了一类带周期边界条件的广义KdV方程Fourier谱方法,得到了L2范数下最优误差估计,改进了由Maday和Quarteroni给出的结果.还提出了一种修改Fourier拟谱方法,并且证明它享有与Fourier谱方法同样的收敛性. A Fourier spectral method for the generalized Korteweg-de Vries equation with periodic boundary conditions is analyzed and corresponding optimal error estimate in L2-nonn is obtained, which improves the one by Maday and Quarteroni. Also a modified Fourier pseudospectral method is presented and it is proven that it enjoys the same convergence properties as the Fourier spectral method.
出处 《应用数学和力学》 CSCD 北大核心 2009年第1期30-39,共10页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(60874039) 上海市重点学科建设资助项目(J50101)
关键词 FOURIER谱方法 修改Fourier拟谱方法 广义KDV方程 误差估计 Fourier spectral method modified Fourier pseudospectral method generalized Korteweg-de Vries equation error estimate
  • 相关文献

参考文献11

  • 1Abe K, Inoue O. Fourier expansion solution of the KdV equation[J]. J Computational Physics, 1980, 34(2) : 202-210.
  • 2Fornberg B, Whitham G B. A numerical and theoretical study of certain nonlinear phenomena[ J]. Phil Trans Roy Soc London Set A, 1978,289( 1361 ) : 373-404.
  • 3Chan T F, Kerkhoven T. Fourier methods with extended stability intervals for the Korteweg-de Vries equation[ J ]. SIAM J Numerical Analysis, 1985,22 ( 3 ) :441-454.
  • 4Ma H P, Guo B Y. The Fourier pseudospectral method with a restrain operator for the Korteweg-de Vries equation[ J]. J Computationcd Physics, 1986, 65( 1 ) : 120-137.
  • 5Maday Y, Quarteroni A. Error analysis for spectral approximation of the Korteweg-de Vries equation [ J]. RAIRO Modelisation Mathematique et Analyse Numerique, 1988,22(3) :499-529.
  • 6Kalisch H. Rapid convergence of a Galerkin projection of the KdV equation [J]. Comptes Rendus Mathematique, 2005,341 (7) : 457-460.
  • 7Bjφrkavag M,Kalisch H. Exponential convergence of a spectral projection of the KdV equation[ J]. Physics Letters A, 2007,365(4) : 278-283.
  • 8Kreiss H O, Oliger J. Stability of the Fourier method[ J]. SIAM J Numerical Analysis, 1979,16(3) : 421-433.
  • 9Adams R A. Sobolev Spaces[ M]. New York:Academic Press, 1975.
  • 10Ma M P, Sun W W. Optimal error estimates of the Legendre-Petrov-Galerkin method for the Korteweg-de Vries equation[ J]. SIAM J Numerical Analysis ,2001,39(4 ) : 1380-1394.

同被引文献17

  • 1李保安,尤国伟,秦青.BBM方程的周期波解和孤立波解[J].河南科技大学学报(自然科学版),2004,25(5):70-73. 被引量:7
  • 2李志斌.非线性数学物理方程的行波解[M].北京:科技出版社.2006.
  • 3Wazwaz A M. The tanh method for travelling wave solutions of nonlinear equations[J]. Appl Math Comput, 2004, 154(3) :713-723.
  • 4ZHANG Sheng, XIA Tie-cheng. A generalized new auxiliary equation method and its applications to nonlinear partial differential equations[J]. Phys Lett A, 2007, 363(5/6) :355-350.
  • 5Wazwaz A M. A sine-cosine method for handling nonlinear wave equations[ J]. Math Comput Modelling, 2004, 40 (5/6) : 499-508.
  • 6ZHANG Sheng. Application of Exp-function method for (3+1)-dimensional nonlinear evolution equations[Jl. Computers Mathematics with Applications, 2008, 56(5) : 1451-1456.
  • 7WANG Ming-liang, LI Xiang-zheng, ZHANG Jing-liang. The (G/G')-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics [J]. Phys Lett A, 2008 , 372(4):417-423.
  • 8Bekir A. Application of the (G/G')-expansion method for nonlinear evolution equations [J]. Phys Lett A, 2008, 372(19): 3400-3405.
  • 9ZHANG Jiao, WEI Xiao-li, LU Yong-jie. A generalized (G/G')-expansion method and its applications[J]. Phys Lett A, 2008, 372(20): 3653-3658.
  • 10ZHANG Sheng, TONG Jing-lin, WANG Wei. A generalized (G/G')-expansion method for the mKdV equation with variable coefficients [J]. Phys Lett A, 2008, 372 ( 13 ) : 2254-2257.

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部