期刊文献+

p旋转对称IFS奇怪吸引子的[p,q]^+双曲排列

Hyperbolic Tilings with [p,q]^+ Symmetries About the Strange Attractors from IFS with p-Rotational Characteristics in Euclidean Plane
下载PDF
导出
摘要 具有p旋转对称特性且含有多个压缩仿射变换的IFS迭代函数系被进一步旋转压缩到[p,q]+双曲平面的中心格子上.通过双曲几何的等变换矩阵的双曲对称排列,将普通平面上的具有旋转对称特性的有界不变集排列在双曲圆内并生成[p,q]+双曲图案.本文所提出的构造技术可以用于生成任意有界的平面对称奇怪吸引子的双曲对称排列图案. To construct the images with hyperbolic symmetry [p,q]^+ from Iterated Function Systems, the IFS with p-rotational symmetry characteristics , which were composed of multi-contraction affine transformations, were further compressed and rotated to the central lattice of a hyperbolic plane [p,q]^+. The strange attractors from IFS, limited in the central lattice, were translated to the whole hyperbolic plane by the isometry transformations of hyperbolic geometry. A method was presented about how to generate images with [p,q]^+ symmetry from the ordinary and bounded fixed sets with rotational symmetry. The method can be used to construct the hyperbolic symmetry images from any bounded symmetry strange attractors in Euclidean plane.
作者 陈宁 丁皓
出处 《小型微型计算机系统》 CSCD 北大核心 2009年第1期111-115,共5页 Journal of Chinese Computer Systems
基金 辽宁省自然科学基金项目(20032005)资助 沈阳市科技局基金项目(200143-01)资助
关键词 双曲对称 仿射变换 IFS迭代函数系 奇怪吸引子 hyperbolic symmetry affine transformations IFS strange attractor
  • 相关文献

参考文献9

  • 1Escher M C. Escher on escher: exploring the infinite[M]. New York: Harry N. Abrams, 1989.
  • 2Adcock B M, Jones K C, Reiter C A, et al. Iterated function systems with symmetry in the hyperbolic plane [J]. Computers Graphics, 2000,24(5) : 791-796.
  • 3Chung K W, Chan H S Y, Wang B N. Efficient generation of hyperbolic symmetries from dynamics[J]. Chaos, Solitons Fractals, 2002, 13:1175-1190.
  • 4Chung K W, Chan H S Y,Wang B N. Hyperbolic symmetries from dynamics [J]. Computer & Mathematics with Applications, 1996, 31(2):33-47.
  • 5Sehattschneider D, Eseher M C. Visions of symmetry [M]. New York: Freeman, 1990.
  • 6Dunham D. Hyperbolic symmetry [J], Computer & Mathematics with Applications, 1986, 12B:139-153.
  • 7Chen Ning,Li Zi-chuan,Jin Yuan-yuan. Chaotic attractors and generalized filled-in Julia sets from mapping with hyperbolic limit dise[J]. Journal of Shenyang Jianzhu University,2006, 22 (6) : 999-1003.
  • 8Chen Ning, Li Zi-chuan , Jin Yuan-yuan. Visual presentation of dynamic systems with hyperbolic planar symmetry[Z]. Chaos, Solitons & Fractals,available online,29 Sept. 2007.
  • 9Field M, Golubitsky M. Symmetric in Chaos[M]. New York: Oxford University Press, 1992.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部