期刊文献+

分形空间中力学规律的适应性原理与标度不变性原理 被引量:1

The Adaptability Principle of Mechanical Law and the Scale-invariant Principle of Mechanical Law in Fractal Space
原文传递
导出
摘要 本文应重整化群的参数空间变换和标度空间变换的方法证明了分形空间的力学规律的适应性原理和标度不变性原理。从空间变换的角度讲,从分形空间的物理规律到欧式空间的物理规律变换就是标度不变性的变换,从欧氏空间的物理规律到分形空间的物理规律变换就是一个适应性变换。其推论是分形空间的能量守恒定律、力的合成及其位移的合成在分形空间上保持形式不变。同时,Carpinteri的分形空间的空间维数关系利用重整化方法获得证明,即分形空间的体积的维数溢出量等于分形空间的截线和截面的维数溢出量之和。 The adaptability principle of mechanical law and the scale-invariant principle of mechanical law in fractal space are proved by using parameter - space and scale-space transforms in renormalization groups. From the space-transform angle, the transform of mechanical law from fraetal space to European space is the scale-invariant transform while the transform of mechanical law from European space to fractal space is the adaptability transform. Their deductions are that law of conservation of energy and vectorial resultant of force and displacement in fractal space hold the line in form and Carpinteri's dimensional formula of fractal space is also proved. Namely, the spilling dimension of volume in fractal space equals to the sum of the spilling dimension of transversal and section.
出处 《世界科技研究与发展》 CSCD 2008年第6期800-802,共3页 World Sci-Tech R&D
关键词 分形空间 适应性 标度不变性 重整化群 力学规律 fractal space adaptability scale-invariant renormalization groups mechanical law
  • 相关文献

参考文献15

  • 1Mandelbrot B B,Passoja D E, Paullay A J. Fractal character of fracture surfaces of metals [ J ]. Nature, 1984,308 : 721 - 722
  • 2谢和平.分形力学的数学基础[J].力学进展,1995,25(2):174-185. 被引量:16
  • 3谢和平.分形力学研究进展[J].力学与实践,1996,18(2):10-18. 被引量:12
  • 4Panagiotopoulos P D, Panagouli O K. The BEM in plates with boundaries of fractal geometry [ J ]. Engineering Analysis with Boundary Elements, 1996,17 : 153 - 160
  • 5Panagoulit O K, Panagiotopoulosts P D. The FEM and BEM for fractal boundaries and interfaces, Applications to unilateral problems [ J ], Compuars & Srrucrures, 1997,14 (64) :329 - 339
  • 6Panagouli O K. On the fractal nature of problems in mechanics[ J]. Chaos Solutions & Fractals, 1997,8:287 - 301
  • 7Carpinteri A. Scaling laws and renormalization groups for strength and toughness of disordered materials [ J ]. International Journal of Solids and Structures,1994,31 (3) : 291 -302
  • 8Carpinteri A, Chiaia B, Invernizzi S. Static-kinematic duality and the principle of virtual work in the mechanics of fraetal media [ J ]. Computer Methods in Applied Mechanics and Engineering, 2001,191 (9) : 3 - 19
  • 9Carpinteri A,Cometti P,Barpi F,et al. Cohesive crack model description of ductile to brittle size - scale transition: dimensional analysis vs. renormalization group theory [ J ]. Engineering Fracture Mechanics,2003,70 (14) : 1809 - 1839
  • 10Carpinteri A, Chiaia B, Cometti P. On the mechanics of quasi - brittle materials with a fraetal microstructure [ J ]. Engineering Fracture Mechanics, 2003,70:2321 - 2349

共引文献25

同被引文献13

  • 1汪机.针灸问对[M].南京:江苏科学技术出版社,1985.67,68.
  • 2琼瑶真人.针灸神书[M].北京:中医古籍出版社.2007:63.
  • 3Rudolf Karch, Friederike Neumann. Fractal Properties of Perfusion Heterogeneity in Optimized Arterial Trees: A Model Study[J].The Rockefeller University Press,2003/09/307/15.
  • 4fellow T H A P. Physiological circuits: The intellectual origins of the McCulloch-Pitts neural networks[J]. Journal of the History of the Behavioral Sciences,2002,38(1):3-25.
  • 5Herz A,Sulzer B,R.K u hn and J.L.van Hemmen-Euro physics Letters, 1988: The Hebb Rule: Storing Static and Dynamic Objects in an Associative Neural Network.
  • 6G.Joyaa, Author Vitae, M.A. Atenciab Author Vitae, F. Sandoval: Hopfield neural networks for optimization: study of the different dynamics.
  • 7Roberta Kwok.The shape of life: Biology's biggest mystery[J].New Scientist,2012(9):2880.
  • 8王春雷,吴金鹏,王军,原林.筋膜学说解读中医经络实质及针灸作用机制[J].中国中医基础医学杂志,2008,14(4):312-314. 被引量:69
  • 9杨晓倩,李厚臣,汤立新.经络穴位低电阻特性的研究概述[J].中国中医药现代远程教育,2009,7(12):232-234. 被引量:11
  • 10王然芸,郭义,郭永明.针灸处方的历史考析[J].上海针灸杂志,2012,31(3):200-201. 被引量:8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部