期刊文献+

有限维代数扩张的同构与维数群 被引量:1

Isomorphisms and Dimension Groups of Extensions of Finite Dimensional Algebras
下载PDF
导出
摘要 对于有限维C*-代数A,证明了其本质扩张的同构与酉等价是一致的,由此证明了扩张群Ext(A)中的等价类是区分该类扩张代数的完全不变量,并利用Bratteli图计算出它们的维数群. In this paper we prove that isomorphism equivalence and unitary equivalence of essential extensions of finite dimensional C*-algebras by κ are equivalent. We also give the dimension groups of these extension algebras and prove that they ave stably isomorphic but not isomorphic.
出处 《数学进展》 CSCD 北大核心 2008年第6期701-709,共9页 Advances in Mathematics(China)
关键词 C*-代数 扩张 序群 C*-algebra extension ordered group
  • 相关文献

参考文献15

  • 1Arveson, W., Notes on extensions of C^*-algebras, Duke Math. J., 1977, 44 (2): 329-355.
  • 2Blackadar, B., K-theory for Operator Algebras, Second edition, Mathematical Sciences Research Institute Publications, 5, Cambridge: Cambridge University Press, 1998.
  • 3Bratteli, O., Inductive limits of finite dimensional C^*-algebras, Trans. Amer. Math. Soc., 1972, 171: 195-234.
  • 4Brown, L.G., Stable isomorphism of hereditary subalgebras of C^*-algebras, Pacific J. Math., 1977, 71 (2): 335-348.
  • 5Brown, L.G., Douglas, R.G., Fillmore, P.A., Unitary equivalence modulo the compact operators and extensions of C^*-algebras, Proceedings of a Conference on Operator Theory (Dalhousie Univ., Halifax, N.S., 1973), Lecture Notes in Math., Vol. 345, Berlin: Springer, 1973, 58-128.
  • 6Elliott, G.A., On the classification of C^*-algebras of real rank zero, J. Reine Angew. Math., 1993, 443: 179-219.
  • 7Elliott, G.A., A classification of certain simple C^*-algebras, II. J. Ramanujan Math. Soc., 1997, 12 (1): 97-134.
  • 8Elliott, G.A., Gong, Guihua, On the classification of C^*-algebras of real rank zero, II. Ann. of Math., 1996, 144 (3): 497-610.
  • 9Lin Huaxin, On the classification of C^*-algebras of real rank zero with zero K1, J. Operator Theory, 1996, 35 (1): 147-178.
  • 10Lin Huaxin, A classification theorem for infinite Toeplitz algebras. Operator algebras and operator theory(Shanghai, 1997), Math., 228, Amer. Math. Soc., Providence, RI, 1998, 219-275.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部