期刊文献+

多线性分数次积分的双权弱型不等式(英文)

Two-weight Weak Type Inequalities for Multilinear Fractional Integrals
下载PDF
导出
摘要 本文给出了双权函数的一个A_p型条件使得多线性分数次积分满足双权弱型(p,g)不等式. We give a Ap-type condition which are sufficient for two-weight weak type (p, q) inequalities for multilinear fractional integral operators.
出处 《数学进展》 CSCD 北大核心 2008年第6期710-718,共9页 Advances in Mathematics(China)
基金 Supported by the National Natural Science Foundation of China(No.10771049,No.60773174) the Natural Science Foundation of Hebei Province(No.08M001)
关键词 多线性分数次积分 双权弱型不等式 YOUNG函数 multilinear fractional integral two-weight weak type inequality Young
  • 相关文献

参考文献11

  • 1Bennett, C., Shaxppley, R., Interpolation of Operators, Academic Press, Boston, MA, 1988.
  • 2Cohen, J., A sharp estimate for multilinear singular integral on ]I(n, Indiana Univ. Math. J., 1981, 30: 693-702.
  • 3Cohen, J., Gosselin, J., A BMO estimate for multilinear singular integral operators, Illinois J. Math., 1986, 30: 445-464.
  • 4Cruz-Uribe, D., Perez, C., Two-weight, weak-type norm inequalities for fractional integral, Calderon- Zygmund operators and commutators, Indiana Univ. Math. J., 2000, 49: 697-721.
  • 5Hofmann, S., On certain nonstandard Calder6n-Zygmund operators, Studia Math., 1994, 109: 105-131.
  • 6Liu Z.G., Lu S.Z., Two-weight weak-type norm inequalities for the commutators of fractional integrals, Integr. Equ. Oper. Theory, 2004, 48: 397-409.
  • 7Martell, J.M., Fractional integrals, potential operators and two-weight weak type norm inequalities on spaces of homogeneous type, J. Math. Anal. Appl., 2004, 294: 223-236.
  • 8C. Perez, Two weighted inequalities for potential and fractional type maximal operators, Indiana Univ. Math. J. 1994, 43: 663-683.
  • 9Perez, C., Wheeden, R.L., Uncertainty pronciple estimates for vector fields, J. Funct. Anal., 2001, 181: 146-188.
  • 10Sawyer, E.T., Wheeden, R., Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math., 1992, 114: 813-874.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部