期刊文献+

关于阶乘模p的序列Ⅱ(英文)

Congruences With Factorials Modulo p Ⅱ
下载PDF
导出
摘要 研究了模p的序列(n1!)k+…+(nl!)k≡λ(modp),其中p是奇素数,k是正整数且1≤k≤p(1-1/loglogp).lk(p)表示最小的正整数使得对任意的整数λ,上述序列均有正整数解.证明了lk(p)=O((logp)3loglogp.k(1+1/loglogp)). Let p be an odd prime and k be an integer with 1 ≤k≤p^(1-1/log log p). Let lk (p) be the smallest integer l≥ 1 such that for every integer λ the congruence ( n1! )^ k +… + ( n1 ! )^ k ≡ λ ( rood p) has a solution in positive integers n1 , …,nl. It is proved that lk(p) =O( (logp)^3log log p · k^(1+1/log logp) ).
作者 戴丽霞
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2008年第4期33-36,共4页 Journal of Nanjing Normal University(Natural Science Edition)
基金 Supported by the National Natural Science Foundation of China(10801075) Natural Science Foundation of Jiangsu Higher Edu-cation Institutions of China(08KJB11007) Science Foundation of Nanjing Normal University(2006101XGQ0128)
关键词 阶乘 指数和 序列 factorials, exponential sums, congruences
  • 相关文献

参考文献10

  • 1Guy R K. Unsolved Problems in Number Theory[ M]. 2nd ed. New York: Springer, 1994.
  • 2Cobeli C, V,Sjaitu M, Zaharescu A. The sequence n! (rood p)[J]. J Ramanujan Math Soc, 2000, 15(3) : 135-154.
  • 3Chen Yonggao, Dai Lixia. Congruences with factorials modulo p[J/OL]. Integers: Electronic J Comb Number Theory, 2006, 6: A21. http://www.integers -ejcnt. org/.
  • 4Erdos P, Stewart C. On the greatest and least prime factors of n! + 1 [J]. J London Math Soc, 1976, 13(3) : 513-519.
  • 5Garaev M Z, Luca F, Shparlinski I E. Character sums and congruences with n! [ J]. Trans Amer Math Soc, 2004, 356 (12) : 5 089-5 102.
  • 6Garaev M Z, Luca F, Shparlinski I E. Sums and congruences with factorials[J]. J Reine Angew Math, 2005, 584(3) : 29- 44.
  • 7Luca F, StanicaP. Products of factorials modulo p[J]. Colloq Math, 2003, 96(2) : 191-205.
  • 8Stewart C. On the greatest and least prime factors of n! + 1 Ⅱ[J]. Publ Math Debrecen, 2004, 65(3) : 461-480.
  • 9Vinogradov I M. Elements of Number Theory[ M]. New York: Dover Publications, 1945.
  • 10Garaev M Z, Luca F, Shparlinski I E. Waring problem with factorials[J]. Bull Austral Math Soc, 2005, 71 (2) : 259- 264.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部