摘要
研究了模p的序列(n1!)k+…+(nl!)k≡λ(modp),其中p是奇素数,k是正整数且1≤k≤p(1-1/loglogp).lk(p)表示最小的正整数使得对任意的整数λ,上述序列均有正整数解.证明了lk(p)=O((logp)3loglogp.k(1+1/loglogp)).
Let p be an odd prime and k be an integer with 1 ≤k≤p^(1-1/log log p). Let lk (p) be the smallest integer l≥ 1 such that for every integer λ the congruence ( n1! )^ k +… + ( n1 ! )^ k ≡ λ ( rood p) has a solution in positive integers n1 , …,nl. It is proved that lk(p) =O( (logp)^3log log p · k^(1+1/log logp) ).
出处
《南京师大学报(自然科学版)》
CAS
CSCD
北大核心
2008年第4期33-36,共4页
Journal of Nanjing Normal University(Natural Science Edition)
基金
Supported by the National Natural Science Foundation of China(10801075)
Natural Science Foundation of Jiangsu Higher Edu-cation Institutions of China(08KJB11007)
Science Foundation of Nanjing Normal University(2006101XGQ0128)
关键词
阶乘
指数和
序列
factorials, exponential sums, congruences