摘要
考虑f为紧致度量空间(X,d)到自身的连续映射,-f:K(X)→K(X)为f诱导的集值映射,其中K(X)为X的所有非空紧子集赋予由d诱导的Hausdorff度量所得空间,Ω为K(X)的特殊子空间.研究了f与fN、f与f×N以及f与-f|Ω的拓扑强混合、初值敏感依赖之间的关系.
It is considered that the continuous map f: X→X and the induced map f: K (X)→K (X), where X is a compact metric space and K(X) is the space of all non-empty compact subsets of X endowed with the Hausdorff metric H,Ω is a special subspace of K(X). The relationship between f and f^N,f and f^xN as well as f and f |Ω regarding topological strong mixing and sensitive dependence on initial conditions are investigated.
出处
《纺织高校基础科学学报》
CAS
2008年第4期435-437,445,共4页
Basic Sciences Journal of Textile Universities
基金
陕西省自然科学基金资助项目(SJ08A24)
关键词
拓扑强混合
初值敏感依赖
集值离散动力系统
VIETORIS拓扑
topological strong mixing
sensitive dependence on initial conditions
set-valued discrete dynamical system
Vietoris topology