期刊文献+

关于拓扑强混合及初值敏感依赖 被引量:1

On topological strong mixing and sensitive dependence on initial conditions
下载PDF
导出
摘要 考虑f为紧致度量空间(X,d)到自身的连续映射,-f:K(X)→K(X)为f诱导的集值映射,其中K(X)为X的所有非空紧子集赋予由d诱导的Hausdorff度量所得空间,Ω为K(X)的特殊子空间.研究了f与fN、f与f×N以及f与-f|Ω的拓扑强混合、初值敏感依赖之间的关系. It is considered that the continuous map f: X→X and the induced map f: K (X)→K (X), where X is a compact metric space and K(X) is the space of all non-empty compact subsets of X endowed with the Hausdorff metric H,Ω is a special subspace of K(X). The relationship between f and f^N,f and f^xN as well as f and f |Ω regarding topological strong mixing and sensitive dependence on initial conditions are investigated.
机构地区 西北大学数学系
出处 《纺织高校基础科学学报》 CAS 2008年第4期435-437,445,共4页 Basic Sciences Journal of Textile Universities
基金 陕西省自然科学基金资助项目(SJ08A24)
关键词 拓扑强混合 初值敏感依赖 集值离散动力系统 VIETORIS拓扑 topological strong mixing sensitive dependence on initial conditions set-valued discrete dynamical system Vietoris topology
  • 相关文献

参考文献15

  • 1BLOCK L S,COPPEL W A. Dynamics in one dimension[M]. Berlin: Springer-Verlag: 1992.
  • 2ROBINSON C. Dynamical system: stability, symbolic dynamics, and chaos[M]. 2nd ed. Florida:CRC Press, Roca Raton, 1999.
  • 3RUELLE D, TAKENS F. On the natural of turbulence[J]. Comm Math Phys, 1971,20..167-192.
  • 4DEVANEY R L. An introduction to chaotic dynamical systems[M]. New York: Addison Wesley, 1989.
  • 5熊金城.拓扑传递系统中的混沌[J].中国科学(A辑),2005,35(3):302-311. 被引量:29
  • 6关鹏,张荣.基于拓扑动力系统中“对初值敏感依赖”概念的推广[J].甘肃联合大学学报(自然科学版),2007,21(3):24-25. 被引量:1
  • 7FEDELI A. On chaotic set-valued discrete dynamical systems[J]. Chaos Solitons Fractals, 2005 , 23 : 1 381-1 384.
  • 8ROMAN-Flores H. A note on transitivity in set-valued discrete system[J]. Chaos Solitons and Fractals,2003,17:99-104.
  • 9ROMAN-Flores H. Robinson's chaos in set-valued discrete system[J]. Chaos Solitons and Fractals, 2005,25: 33-42.
  • 10ALESSANDRO Fedeli. On chaotic set-valued discrete dynamical systems[J]. Chaos Solitons and Fractals, 2005,23 : 1 381-1 384.

二级参考文献30

  • 1范钦杰.混沌与拓扑强混合[J].大学数学,2004,20(6):68-72. 被引量:12
  • 2熊金城.拓扑传递系统中的混沌[J].中国科学(A辑),2005,35(3):302-311. 被引量:29
  • 3熊金城,陈二才.强混合的保测变换引起的混沌[J].中国科学(A辑),1996,26(11):961-967. 被引量:9
  • 4Ruelle D, Takens F. On the natural of turbulence. Comm Math Phys, 1971.20:167-192.
  • 5Li T Y, Yorke J. Period three implies chaos. Amer Math Monthly, 1975, 82:985-992.
  • 6Devaney R. An Introduction to Chaotic Dynamical Systems. Reading MA: Addison-Wesley, 1989.
  • 7Banks J, Brooks J, Cairns G, et al. On Devaney's definition of chaos. Amer Math Monthly, 1992, 99:332-334.
  • 8Huang Wen, Ye Xiangdong. Devaney's chaos or 2-scattering implies Li-Yorke's chaos. Topology and Its Aoolications. 2002. 117:259-272.
  • 9Mad Jiehua. Devaney's chaos implies existence of s-scrambled sets. Proe Amer Math Soc, 2004, 132:2761-2767.
  • 10Xiong Jincheng, Yang Zhongguo. Chaos caused by a topologically mixing maps. In: Shiraiwa K, ed.Proceedings of the International Conference, Dynamical Systems and Related Topics. Singapore: World Scientific Press, 1991. 550-572.

共引文献38

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部