摘要
对于任意的正整数n,著名的Smarandache函数S(n)定义为最小的正整数m,使得n|m!,即就是S(n)=min{m:n|m!,m∈N}.本文的主要目的是应用初等方法研究S(n)与除数函数d(n)的加权均值问题,并获得一个有趣的渐进公式.
For any positive integer n, the Smarandache function S(n) defined as the smallest positive integer m such that n|m! . That is, S(n) = min{m : n|m!, m ∈ N}. The main purpose of the paper is using the elementary methods to study the hybrid mean value problem involving the Smarandache function and the Dirichlet divisor function, and to give a sharper asymptotic formula for it.
出处
《纯粹数学与应用数学》
CSCD
北大核心
2008年第4期662-665,共4页
Pure and Applied Mathematics
基金
国家自然科学基金(10671155)